Consider code like:
```
// Foo.h
typealias NSString * FooKey NS_EXTENSIBLE_TYPED_ENUM;
// Foo.swift
extension FooKey { … }
```
When Swift binds the extension to `FooKey`, that forces ClangImporter to import `FooKey`. ClangImporter’s newtype logic, among other things, checks whether the underlying type (`Swift.String` here) is Objective-C bridgeable and, if so, makes `FooKey` bridgeable too.
But what happens if this code is actually *in* Foundation, which is where the `extension String: _ObjectiveCBridgeable` lives? Well, if the compiler has already bound that extension, it works fine…but if it hasn’t, `FooKey` ends up unbridgeable, which can cause both type checking failures and IRGen crashes when code tries to use its bridging capabilities. And these symptoms are sensitive to precise details of the order Swift happens to bind extensions in, so e.g. adding empty files to the project can make the bug appear or disappear. Spooky.
Add a narrow hack to ClangImporter (only active for types in Foundation) to *assume* that `String` is bridgeable even if the extension declaring this hasn’t been bound yet.
Fixes rdar://142693093.
Since we can't do a proper "deep" clone of expression nodes, cloning
such a CustomAttr is necessarily shallow. In such cases, don't cache
the swift_attr source files at all, so we get fresh attribute nodes
for each such usage.
Introduce a number of fixes to allow us to fully use declarations that
are produced by applying a peer macro to an imported declarations.
These changes include:
* Ensuring that we have the right set of imports in the source file
containing the macro expansion, because it depends only on the module
it comes from
* Ensuring that name lookup looks in that file even when the
DeclContext hierarchy doesn't contain the source file (because it's
based on the Clang module structure)
Expand testing to be sure that we're getting the right calls,
diagnostics, and generated IR symbols.
A recent PR (#77204) started to import C++ source locations into Swift.
This PR flips a switch so these locations are actually used more widely.
Now some of the diagnostic locations are changed, but they generally
improved the quality of the diagnostics, pointing out conformances
imported from Obj-C code right when they are declared.
https://github.com/swiftlang/swift/pull/77236 caused a source compatibility
regression because `extractEnumElement()` does not suppress its diagnostics in
the context of pattern matching. Potentially unavailable enum elements should
not be diagnosed when pattern matching since the generated code will not
retrieve the potentially unavailable element value on versions where it is
unavailable.
Fixes rdar://138771328.
These currently end up as "open", which is incorrect (we need to make them
"final"). This cannot be addressed until we pass the lexical context
down to the macro, which is currently... a bit tricky.
The Clang importer maps arbitrary attributes spelled with `swift_attr("...")`
over to Swift attributes, using the Swift parser to process those attributes.
Extend this mechanism to allow `swift_attr` to refer to an attached macro,
expanding that macro as needed.
When a macro is applied to an imported declaration, that declaration is
pretty-printed (from the C++ AST) to provide to the macro implementation.
There are a few games we need to place to resolve the macro, and a few more
to lazily perform pretty-printing and adjust source locations to get the
right information to the macro, but this demonstrates that we could
take this path.
As an example, we use this mechanism to add an `async` version of a C
function that delivers its result via completion handler, using the
`@AddAsync` example macro implementation from the swift-syntax
repository.
A change to the way we determined whether a protocol conformance is
"dependent" for marker protocols caused an ABI break for
Sendable-refining protocols built with pre-6.0 Swift compilers. The
fix for this issue (https://github.com/swiftlang/swift/pull/75769)
gated the change on deployment target.
The deployment target change fixed the original problem, then caused a
related issue when a project mixes deployment targets (pre-6.0 and
6.0+) with non-resilient protocols. Exempt non-resilient protocols from
this change so we get consistent behavior.
Fixes rdar://134953989.
Honour the SDK for APINotes to augment the system libraries. This allows
us to distribute APINotes with the Swift SDK and impact the system
without having to map the APINotes into the filesystem.
Print an error message and exit with a non-zero code when we hit the timeout. This makes it clear when a test fails due to a timeout. On Darwin, run `sample` on the target process first, so that the failure includes some information about what the test was doing when the timeout occurred.
If a function body is emitted, all of the declarations inside that function
body must be emitted, too. Previously, lazy var initializers were being skipped
regardless of whether the function containing them was skipped, resulting in
SIL verification errors (which were correctly predicting linker errors).
Resolves rdar://134708502.
10.50 was once greater than any real macOS version, but now it compares
less than real released versions, which makes these tests depend on the
deployment target unnecessarily. Update these tests to use even larger
numbers to hopefully keep them independent a little longer.
Within Swift 6.0, we expanded an optimization for witness tables that
that allowed direct access to the witness table for conformances to
any protocol that can never have a witness table, rather than requiring
access through `swift_getWitnessTable` that might need to instantiate
the witness table.
The previous optimization only covered Objective-C protocols, but Swift
6.0 expanded that to marker protocols (such as `Sendable`) as well.
However, this constituted an API break when a Swift 6.0 compiler uses
a witness table that comes from a library built with an earlier version
of Swift, when the protocol inherits from Sendable but the conformance
to that protocol otherwise does not require an instantiation function.
In such cases, Swift 6.0 would generate code that directly accesses
the uninstantiated witness table symbol, which will have NULL entries
for any conformance in it that was considered "dependent" by the
earlier Swift compiler.
Introduce a deployment target check to guard the new optimization.
Specifically, when building for a deployment target that predates
Swift 6.0, treat conformances to marker protocols as if they might be
dependent (so the access patterns go through `swift_getWitnessTable`
for potential instantiation on older platforms). For newer deployment
targets, use the more efficent direct access pattern.
Fixes rdar://133157093.
In #74516 the `SWIFT_NOEXCEPT` specifier is added to the imported Swift
functions in C++ mode, but it is added after the function attributes. It seems
that the tests only do `-fsyntax-only`, which seems not to catch an error like
"expected function body after function declarator" when the header is
used without that flag.
Flip the attributes and the specifier around in the printer, and flip
them in all the tests.
The tests were using `%check-in-clang`, but it only checks importing as
an objective-c-header. Add a parallel `%check-in-clang-cxx` to test also
in C++. It uses C++17 because of some details in the imported headers and
disables a warning about variadic macros that was promoted to an error
and was blocking passing the tests. The clang-importer-sdk gets the
minimal set of files to compile the two modified tests as C++. The files
are mostly empty, except `cstddef` that imports the equivalent C header.
Some modifications were needed in `ctypes.h` because the header was
using features only available in C and not C++.
If the extension adds conformance to an invertible protocol, it's
confusing for people to also infer conditional requirements on the
generic parameters for those invertible protocols. This came up in the
review of SE-427.
This change introduces a new compilation target platform to the Swift compiler - visionOS.
- Changes to the compiler build infrastrucuture to support building compiler-adjacent artifacts and test suites for the new target.
- Addition of the new platform kind definition.
- Support for the new platform in language constructs such as compile-time availability annotations or runtime OS version queries.
- Utilities to read out Darwin platform SDK info containing platform mapping data.
- Utilities to support re-mapping availability annotations from iOS to visionOS (e.g. 'updateIntroducedPlatformForFallback', 'updateDeprecatedPlatformForFallback', 'updateObsoletedPlatformForFallback').
- Additional tests exercising platform-specific availability handling and availability re-mapping fallback code-path.
- Changes to existing test suite to accomodate the new platform.
SE-0364 was implemented to discourage "retroactive" conformances that might
conflict with conformances that could be introduced by other modules in the
future. These diagnostics should not apply to conformances that involve types
and protocols imported from the underlying clang module of a Swift module since
the two modules are assumed to be developed in tandem by the same owners,
despite technically being separate modules from the perspective of the
compiler.
The diagnostics implemented in https://github.com/apple/swift/pull/36068 were
designed to take underlying clang modules into account. However, the
implementation assumed that `ModuleDecl::getUnderlyingModuleIfOverlay()` would
behave as expected when called on the Swift module being compiled.
Unfortunately, it would always return `nullptr` and thus conformances involving
the underlying clang module are being diagnosed unexpectedly.
The fix is to make `ModuleDecl::getUnderlyingModuleIfOverlay()` behave as
expected when it is made up of `SourceFile`s.
Resolves rdar://121478556
Fix a leak when emitting the native to foreign thunk for an async
function which fulfills an Objective-C protocol requirement which can be
fulfilled with either a value or an error via a nullable completion.
Previously, the SIL in question used to look like this:
```sil
%maybe_completion = ...
try_apply %impl..., normal success, ...
success(%value):
switch_enum %maybe_completion...
case some!enumelt: invoke
case none!enumelt: ignore
ignore:
br join
invoke(%completion):
%some_value = enum Optional, some!enumelt, %value // consumes %value
%guaranteed_some_value = begin_borrow %some_value
%none_error = enum Optional, none!enumelt
apply %completion(%guaranteed_some_value, %none_error)
end_borrow %guaranteed_some_value
destroy_value %some_value
br join
join:
destroy_value %maybe_completion
...
```
which leaks %value on the codepath through `ignore`.
Note that `%value` is consumed by the `enum` instruction, but
`%completion` is invoked with `%guaranteed_some_value`, a guaranteed
value. So there is no need to consume %value in `invoke`.
Here, `%value` itself is borrowed and forwarded into an enum instruction
whose result is passed to `%completion`:
```sil
%maybe_completion = ...
try_apply %impl..., normal success, ...
success(%value):
switch_enum %maybe_completion...
case some!enumelt: invoke
case none!enumelt: ignore
ignore:
br join
invoke(%completion):
%guaranteed_value = begin_borrow %value
%guaranteed_some_value = enum Optional, some!enumelt, %guaranteed_value
%none_error = enum Optional, none!enumelt
apply %completion(%guaranteed_some_value, %none_error)
end_borrow %guaranteed_some_value
br join
join:
destroy_value %maybe_completion
destroy_value %value
...
```
Because an argument scope was already being created and a cleanup was
already being pushed for `%value`, nothing more is required to fix the
issue than to reorder the enum and the borrow.
rdar://119732084
For an isolated ObjC function that is not async, we
emit a hops around the call. But if that function
returns an autoreleased pointer, we need to ensure
we're retaining that pointer before hopping back
after the call. We weren't doing that in the case
of an autoreleased NSError:
```
%10 = alloc_stack $@sil_unmanaged Optional<NSError>
%19 = ... a bunch of steps to wrap up %10 ...
%20 = enum $Optional<AutoreleasingUnsafeMutablePointer<Optional<NSError>>>, #Optional.some!enumelt, %19 : $AutoreleasingUnsafeMutablePointer<Optional<NSError>>
hop_to_executor $MainActor
%26 = apply X(Y, %20) : $@convention(objc_method) (NSObject, Optional<AutoreleasingUnsafeMutablePointer<Optional<NSError>>>) -> @autoreleased Optional<NSString>
hop_to_executor $Optional<Builtin.Executor>
// retain the autoreleased pointer written-out.
%28 = load [trivial] %10 : $*@sil_unmanaged Optional<NSError>
%29 = unmanaged_to_ref %28 : $@sil_unmanaged Optional<NSError> to $Optional<NSError>
%30 = copy_value %29 : $Optional<NSError>
assign %31 to %7 : $*Optional<NSError>
```
This patch sinks the hop emission after the call
so it happens after doing that copy.
rdar://114049646
Swift names provided via C attributes or API notes can be parsed as
special names, such as `init` or `subscript`. However, doing so would
cause the Clang importer to crash, because it assumes that these names
are always identifiers. In these places, we actually want to treat
them as identifiers, where special names are mapped back to their
keywords. Introduce a function to do that, and use it consistently.
Swift has some module maps it overlays on Linux and Windows that groups all of the C standard library headers into a single module. This doesn’t allow clang and C++ headers to layer properly with the OS/SDK modules. clang will set -fbuiltin-headers-in-system-modules as necessary for Apple SDKs, but Swift will need to pass that flag itself when required by its module maps.