This changes the scanner's behavior to "resolve" a discovered module's dependencies to a set of Module IDs: module name + module kind (swift textual, swift binary, clang, etc.).
The 'ModuleDependencyInfo' objects that are stored in the dependency scanner's cache now carry a set of kind-qualified ModuleIDs for their dependencies, in addition to unqualified imported module names of their dependencies.
Previously, the scanner's internal state would cache a module dependnecy as having its own set of dependencies which were stored as names of imported modules. This led to a design where any time we needed to process the dependency downstream from its discovery (e.g. cycle detection, graph construction), we had to query the ASTContext to resolve this dependency's imports, which shouldn't be necessary. Now, upon discovery, we "resolve" a discovered dependency by executing a lookup for each of its imported module names (this operation happens regardless of this patch) and store a fully-resolved set of dependencies in the dependency module info.
Moreover, looking up a given module dependency by name (via `ASTContext`'s `getModuleDependencies`) would result in iterating over the scanner's module "loaders" and querying each for the module name. The corresponding modules would then check the scanner's cache for a respective discovered module, and if no such module is found the "loader" would search the filesystem.
This meant that in practice, we searched the filesystem on many occasions where we actually had cached the required dependency, as follows:
Suppose we had previously discovered a Clang module "foo" and cached its dependency info.
-> ASTContext.getModuleDependencies("foo")
--> (1) Swift Module "Loader" checks caches for a Swift module "foo" and doesn't find one, so it searches the filesystem for "foo" and fails to find one.
--> (2) Clang Module "Loader" checks caches for a Clang module "foo", finds one and returns it to the client.
This means that we were always searching the filesystem in (1) even if we knew that to be futile.
With this change, queries to `ASTContext`'s `getModuleDependencies` will always check all the caches first, and only delegate to the scanner "loaders" if no cached dependency is found. The loaders are then no longer in the business of checking the cached contents.
To handle cases in the scanner where we must only lookup either a Swift-only module or a Clang-only module, this patch splits 'getModuleDependencies' into an alrady-existing 'getSwiftModuleDependencies' and a newly-added 'getClangModuleDependencies'.
This extends the existing auto-conformance mechanism to synthesize the conformances to `CxxConvertibleToCollection` protocol for C++ sequence types.
This means that the developer can now call `Array(myCxxSequence)` or `Set(myCxxSequence)` without adding any extensions manually.
A macro declaration contains the external module and type name of the
macro's implementation. Use that information to find the macro type
(via its type metadata accessor) in a loaded plugin, so we no longer
require the "allMacros" array. Instead, each macro implementation type
must be a public struct.
Since we are now fully dependent on the macro declaration for
everything about a macro except its kind, remove most of the query
infrastructure for compiler plugins.
Replace the macro registration scheme based on the allMacros array with
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
Allow more than one macro plugin to introduce a macro with the same
name, and let the constraint solver figure out which one to call. Also
eliminates a potential use-after-free if we somehow find additional
compiler plugins to load after having expanded a macro.
This makes ClangImporter automatically conform C++ collection types to `Cxx.CxxRandomAccessCollection` protocol.
We consider a C++ sequence type to be a random access collection type its iterator conforms to `UnsafeCxxRandomAccessIterator`.
Type check user-defined macros plugins with user-provided type signatures.
Also, load plugin libraries with `RTLD_LOCAL` instead of `RTLD_GLOBAL` to prevent symbol collision between plugins. `llvm::sys::DynamicLibrary` only supports `RTLD_GLOBAL` so we use the plain `dlopen` instead. This does not work on Windows and needs to be fixed.
Friend PR: apple/swift-syntax#1042
This is the start of the removal of the C++ implementation of libSyntax
in favor of the new Swift Parser and Swift Syntax libraries. Now that
the Swift Parser has switched the SwiftSyntaxParser library over to
being a thin wrapper around the Swift Parser, there is no longer any
reason we need to retain any libSyntax infrastructure in the swift
compiler.
As a first step, delete the infrastructure that builds
lib_InternalSwiftSyntaxParser and convert any scripts that mention
it to instead mention the static mirror libraries. The --swiftsyntax
build-script flag has been retained and will now just execute the
SwiftSyntax and Swift Parser builds with the just-built tools.
Allow user-defined macros to be loaded from dynamic libraries and evaluated.
- Introduce a _CompilerPluginSupport module installed into the toolchain. Its `_CompilerPlugin` protocol acts as a stable interface between the compiler and user-defined macros.
- Introduce a `-load-plugin-library <path>` attribute which allows users to specify dynamic libraries to be loaded into the compiler.
A macro library must declare a public top-level computed property `public var allMacros: [Any.Type]` and be compiled to a dynamic library. The compiler will call the getter of this property to obtain and register all macros.
Known issues:
- We current do not have a way to strip out unnecessary symbols from the plugin dylib, i.e. produce a plugin library that does not contain SwiftSyntax symbols that will collide with the compiler itself.
- `MacroExpansionExpr`'s type is hard-coded as `(Int, String)`. It should instead be specified by the macro via protocol requirements such as `signature` and `genericSignature`. We need more protocol requirements in `_CompilerPlugin` to handle this.
- `dlopen` is not secure and is only for prototyping use here.
Friend PR: apple/swift-syntax#1022
Intro ASTContext::setIgnoreAdjacentModules to change module loading to
accept load only resilient modules from their swiftinterfaces, ignoring
the adjacent module and any silencing swiftinterfaces errors.
This makes ClangImporter automatically conform C++ sequence types to `Cxx.UnsafeCxxInputIterator` protocol.
We consider a C++ type to be a random access iterator type if conforms to `UnsafeCxxInputIterator`, and additionally defines `operator-` and `operator+=`.