Instead of setting the code completion position when parsing the if-statement, which doesn’t create a `CodeCompletionExpr`, parse it as a new top-level expression.
As far as test-cases are concerned, this removes the “RareKeyword” flair from top-level completions in the modified test case. This makes sense IMO.
Computing the type relation for every item in the code completion cache is way to expensive (~4x slowdown for global completion that imports `SwiftUI`). Instead, compute a type’s supertypes (protocol conformances and superclasses) once and write their USRs to the cache. To compute a type relation we can then check if the contextual type is in the completion item’s supertypes.
This reduces the overhead of computing the type relations (again global completion that imports `SwiftUI`) to ~6% – measured by instructions executed.
Technically, we might miss some conversions like
- retroactive conformances inside another module (because we can’t cache them if that other module isn’t imported)
- complex generic conversions (just too complicated to model using USRs)
Because of this, we never report an `unrelated` type relation for global items but always default to `unknown`.
But I believe this change covers the most common cases and is a good tradeoff between accuracy and performance.
rdar://83846531
Computing the type relation for every item in the code completion cache is way to expensive (~4x slowdown for global completion that imports `SwiftUI`). Instead, compute a type’s supertypes (protocol conformances and superclasses) once and write their USRs to the cache. To compute a type relation we can then check if the contextual type is in the completion item’s supertypes.
This reduces the overhead of computing the type relations (again global completion that imports `SwiftUI`) to ~6% – measured by instructions executed.
Technically, we might miss some conversions like
- retroactive conformances inside another module (because we can’t cache them if that other module isn’t imported)
- complex generic conversions (just too complicated to model using USRs)
Because of this, we never report an `unrelated` type relation for global items but always default to `unknown`.
But I believe this change covers the most common cases and is a good tradeoff between accuracy and performance.
rdar://83846531
Filter name for completion item is always used. Also, for cached items,
they are used multiple times for filtering. So precomputing and caching
it improves performance.
rdar://84036006
Convert 'ContextFreeCodeCompletionResult' constructor overloads to
'create()' factory methods. This is the consistent interface with
'CodeCompletionString'. NFC
[CodeCompletion] Make ExpectedTypeContext a class with explicit getters/setters
This simplifies debugging because you can break when the possible types are set and you can also search for references to `setPossibleType` to figure out where the expected types are being set.
The distributed case is distinguishable from the non-distributed case
based on the actor type itself for those rare cases where we care. The
vast majority of code is simplified by treating this identically to
`ActorInstance`.
This allows makes the distinction between cachable and non-cachable properties cleaner and allows us to more easily compute contextual information (like type relations) for cached items later.
Opened archetypes can be created in the constraint system, and the
existential type it wraps can contain type variables. This can happen
when the existential type is inferred through a typealias inside a
generic type, and a member reference whose base is the opened existential
gets bound before binding the generic arguments of the parent type.
However, simplifying opened archetypes to replace type variables is
not yet supported, which leads to type variables escaping the constraint
system. We can support cases where the underlying existential type doesn't
depend on the type variables by canonicalizing it when opening the
existential. Cases where the underlying type requires resolved generic
arguments are still unsupported for now.
Previously the code completion methods just returned an `ArrayRef` that pointed into the result sink that contained the results but no effort was made to actually keep that that result sink alive, e.g. when transforming results in `transformAndForwardResults`.
Instead, return the `CodeCompletionResultSink` from the code compleiton methods now and adopt that sink from the inner results created in `transformAndForwardResults`.
Now that arguments are marked up with whether they have a default or
not, clients may not need the extra call (that has no default
arguments). Add an option to allow not adding this item.
Resolves rdar://85526214.