This PR introduces three new instrumentation flags and plumbs them
through to IRGen:
1. `-ir-profile-generate` - enable IR-level instrumentation.
2. `-cs-profile-generate` - enable context-sensitive IR-level
instrumentation.
3. `-ir-profile-use` - IR-level PGO input profdata file to enable
profile-guided optimization (both IRPGO and CSIRPGO)
**Context:**
https://forums.swift.org/t/ir-level-pgo-instrumentation-in-swift/82123
**Swift-driver PR:** https://github.com/swiftlang/swift-driver/pull/1992
**Tests and validation:**
This PR includes ir level verification tests, also checks few edge-cases
when `-ir-profile-use` supplied profile is either missing or is an
invalid IR profile.
However, for argument validation, linking, and generating IR profiles
that can later be consumed by -cs-profile-generate, I’ll need
corresponding swift-driver changes. Those changes are being tracked in
https://github.com/swiftlang/swift-driver/pull/1992
Introduce the ability to form a `StaticBuildConfiguration` from
language options. Add a frontend option `-print-static-build-config`
to then print that static build configuration as JSON in a manner that
can be decoded into a `StaticBuildConfiguration`.
Most of the change here is in sinking the bridged ASTContext queries
of language options into a new BridgedLangOptions. The printing of the
static build configuration only has a LangOptions (not an ASTContext),
so this refactoring is required for printing.
The flags "-import-bridging-header" and "-import-pch" import a bridging
header, treating the contents as a public import. Introduce
"internal-" variants of both flags that provide the same semantics,
but are intended to treat the imported contents as if they came in
through an internal import. This is just plumbing of the options for
the moment.
This command-line option hasn't been Objective-C specific ever, really.
Make the language-independent spelling the primary one to make that
more obvious.
This was used a long time ago for a design of a scanner which could rely on the client to specify that some modules *will be* present at a given location but are not yet during the scan. We have long ago determined that the scanner must have all modules available to it at the time of scan for soundness. This code has been stale for a couple of years and it is time to simplify things a bit by deleting it.
It is a maintenance burden and having the legacy driver exist in a simplified state reduces the possibility of things going wrong and hitting old bugs.
The "featues" part was never actually implemented and Swift Driver
is replying on information about arguments, so instead of removing
this mode, let's scope it down to "arguments" to be deprecated in
the future.
This is a replacement for `-emit-supported-features` that prints
all of the upcoming/experimental features supported by the compiler
with some additional meta information in JSON format to stdout.
Checking each module dependency info if it is up-to-date with respect to when the cache contents were serialized in a prior scan.
- Add a timestamp field to the serialization format for the dependency scanner cache
- Add a flag "-validate-prior-dependency-scan-cache" which, when combined with "-load-dependency-scan-cache" will have the scanner prune dependencies from the deserialized cache which have inputs that are newer than the prior scan itself
With the above in-place, the scan otherwise proceeds as-is, getting cache hits for entries still valid since the prior scan.
The symbol graph output from a module can contain an arbitrary number of
files, depending on what extensions it contains, so cache a list of
symbol graph files with their base name and contents so that they can be
replayed.
rdar://140286819
CAS support in compiler relies on supplementary paths to decide the mapping between input and output files. Therefore, we
have to compute the paths of the module ObjC trace files in this canonical place to have CAS support for
this newly added ObjC message trace files.
This is something that I have wanted to add for a while and have never had the
need to. I need it now to fix a bug in the bots where I am forced to use IRGen
output to test ThunkLowering which causes platform level differences to show up
in the FileCheck output. With this, I can just emit the actual lowered SIL
output and just test it at that level. There are other cases like this where we
are unable to test lowered SIL so we use IRGen creating this brittleness.
Hopefully this stops this problem from showing up in the future.
rdar://138845396
to verify ExportedSourceFileRequest == 0.
In release mode only non-zero stats are printed by default now.
Fix diagnostic when compiler is built without statistics support.
This mode is similar to `swift-symbolgraph-extract`; it takes a subset of compiler
flags to configure the invocation for module loading, as well as a module name
whose contents should be extracted. It does not take any other input files. The
output is a single text file specified by `-o` (or `stdout` if not specified).
While the most common use case for this would be viewing the synthesized Swift
interface for a Clang module, since the implementation simply calls
`swift::ide::printModuleInterface` under the hood, it's usable for any module
that Swift can import. Thus, it could also be used to view a synthesized textual
representation of, say, a compiled `.swiftmodule`.
One could imagine that in the future, we might add more flags to
`swift-synthesize-interface` to modify various `PrintOptions` used when
generating the output, if we think those would be useful.
Add a new filetype for this mode option: "Raw LLVM IR". When the mode
option is emit-irgen, the new filetype will be the output kind;
conversely when determining the mode option to use, if the output kind
is the new filetype, the mode option will be emit-irgen.
This removes the implementation of the `swift-indent` tool, its
associated documentation, and utilities. This tool was never completed
and has much better alternatives with `swift-format` which is more
flexible and actually maintained.
Now that API descriptions are emitted during module build jobs when
`-emit-api-descriptor-path` is specified and the build system has been updated
to pass that flag when the output is needed, the `swift-api-extract` frontend
alias is no longer used. Delete it and the tests that were specific to invoking
`swift-api-extract`.
Resolves rdar://116537394.
This adds three new assertion macros:
* `ASSERT` - always compiled in, always checked
* `CONDITIONAL_ASSERT` - always compiled in, checked whenever the `-compiler-assertions` flag is provided
* `DEBUG_ASSERT` - only compiled into debug builds, always checked when compiled in (functionally the same as Standard C `assert`)
The new `-compiler-assertions` flag is recognized by both `swift-frontend` and
`swiftc`.
The goal is to eventually replace every use of `assert` in the compiler with one of the above:
* Most assertions will use `ASSERT` (most assertions should always be present and checked, even in release builds)
* Expensive assertions can use `CONDITIONAL_ASSERT` to be suppressed by default
* A few very expensive and/or brittle assertions can use `DEBUG_ASSERT` to be compiled out of release builds
This should:
* Improve quality by catching errors earlier,
* Accelerate compiler triage and debugging by providing more accurate crash dumps by default, and
* Allow compiler engineers and end users alike to add `-compiler-assertions` to get more accurate failure diagnostics with any compiler
This change introduces a new compilation target platform to the Swift compiler - visionOS.
- Changes to the compiler build infrastrucuture to support building compiler-adjacent artifacts and test suites for the new target.
- Addition of the new platform kind definition.
- Support for the new platform in language constructs such as compile-time availability annotations or runtime OS version queries.
- Utilities to read out Darwin platform SDK info containing platform mapping data.
- Utilities to support re-mapping availability annotations from iOS to visionOS (e.g. 'updateIntroducedPlatformForFallback', 'updateDeprecatedPlatformForFallback', 'updateObsoletedPlatformForFallback').
- Additional tests exercising platform-specific availability handling and availability re-mapping fallback code-path.
- Changes to existing test suite to accomodate the new platform.
LLVM is presumably moving towards `std::string_view` -
`StringRef::startswith` is deprecated on tip. `SmallString::startswith`
was just renamed there (maybe with some small deprecation inbetween, but
if so, we've missed it).
The `SmallString::startswith` references were moved to
`.str().starts_with()`, rather than adding the `starts_with` on
`stable/20230725` as we only had a few of them. Open to switching that
over if anyone feels strongly though.
This patch adds a new flag sanitize-stable-abi to support linking
against the Sanitizers stable ABI added recently in compiler-rt. The
patch also passes extra options for the ASan pass when using this flag
to outline instrumentation code and remove version check.
rdar://112915278
It has an extension .package.swiftinterface and contains package decls
as well as SPIs and public/inlinable decls. When a module is loaded
from interface, it now looks up the package-name in the interface
and checks if the importer is in the same package. If so, it uses
that package interface found to load the module. If not, uses the existing
logic to load modules.
Resolves rdar://104617854
Previously it was hardcoded to version 4 on all platforms.
This patch introduces a driver and frontend option -dwarf-version to configure it if needed.
An "API descriptor" file is JSON describing the externally accessible symbols
of a module and metadata associated with those symbols like availability and
SPI status. This output was previously only generated by the
`swift-api-extract` alias of `swift-frontend`, which is desgined to take an
already built module as input. Post-processing a built module to extract this
information is inefficient because the module and the module's dependencies
need to be deserialized in order to visit the entire AST. We can generate this
output more efficiently as a supplementary output of the -emit-module job that
originally produced the module (since the AST is already available in-memory).
The -emit-api-descriptor flag can be used to request this output.
This change lays the groundwork by introducing frontend flags. Follow up
changes are needed to make API descriptor emission during -emit-module
functional.
Part of rdar://110916764.
This action is currently just an alias of the `-resolve-imports` action.
However, it's named to more clearly reflect the purpose which is to do the
minimal typechecking needed in order to emit the requested outputs. This mode
is intended to improve performance when emitting `.swiftinterface` and `.tbd`
files.
LLVM deprecated, renamed, and removed a bunch of APIs. This patch
contains a lot of the changes needed to deal with that.
The SetVector type changed the template parameters.
APInt updated multiple names, countPopulation became popcount,
getAllOnesValue became getAllOnes, getNullValue became getZero, etc...
Clang type nullability check stopped taking a clang AST context.
The LLVM IRGen Function type stopped exposing basic block list directly,
but gained enough API surface that the translation isn't too bad.
(GenControl.cpp, LLVMMergeFunctions.cpp)
llvm::Optional had a transform function. That was being used in a couple
of places, so I've added a new implementation under STLExtras that
transforms valid optionals, otherwise it returns nullopt.