Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
The toolchain was introduced in 710816d3e0
but was not used. Test cases now use fake resource dir to lookup
static-executable-args.lnk file, which is required by the toolchain but
is not present when not building stdlib for WASI.
Teach swift how to serialize its input into CAS to create a cache key
for compiler outputs. To compute the cache key for the output, it first
needs to compute a base-key for the compiler invocation. The base key is
computed from: swift compiler version and the command-line arguments for
the invocation.
Each compiler output from swift will gets its own key. The key for the
output is computed from: the base key for the compiler invocation + the
primary input for the output + the output type.
This allows building the Swift standard library for targets which may
not have an actual OS running. This is identified by the OS field in
the target triple being set to `none`.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
Swiftc port of https://github.com/apple/llvm-project/pull/4207.
This introduces a new flag, `-file-prefix-map` which can be used
instead of the existing `-debug-prefix-map` and `-coverage-prefix-map`
flags, and also remaps paths in index information currently.
This change removes the -emit-cxx-header option, and adds a new -emit-clang-header-path option instead. It's aliased to -emit-objc-header-path for now, but in the future, -emit-objc-header-path will alias to it. After this change Swift can start emitting a single header file that can be expose declarations to C, Objective-C, or C++. For now C++ interface is generated (for all public decls) only when -enable-cxx-interop flag is passed, but that behavior will change once attribute is supported.
This change causes the cache to be layered with a local "cache" that wraps the global cache, which will serve as the source of truth. The local cache persists only for the duration of a given scanning action, and has a store of references to dependencies resolved as a part of the current scanning action only, while the global cache is the one that persists across scanning actions (e.g. in `DependencyScanningTool`) and stores actual module dependency info values.
Only the local cache can answer dependency lookup queries, checking current scanning action results first, before falling back to querying the global cache, with queries disambiguated by the current scannning action's search paths, ensuring we never resolve a dependency lookup query with a module info that could not be found in the current action's search paths.
This change is required because search-path disambiguation can lead to false-negatives: for example, the Clang dependency scanner may find modules relative to the compiler's path that are not on the compiler's direct search paths. While such false-negative query responses should be functionally safe, we rely on the current scanning action's results being always-present-in-the-cache for the scanner's functionality. This layering ensures that the cache use-sites remain unchanged and that we get both: preserved global state which can be queried disambiguated with the search path details, and an always-consistent local (current action) cache state.
This commit adds support for the -lto_library flag, allowing users to specify a custom LTO library on Darwin. This also fixes an issue where the default LTO library is used even if Driver is run from inside an alternate toolchain.
Gather 'round to hear tell of the saga of autolinking in incremental
mode.
In the beginning, there was Swift code, and there was Objective-C code.
To make one import bind two languages, a twinned Swift module named the same as an
Objective-C module could be imported as an overlay. But all was not
well, for an overlay could be created which had no Swift content, yet
required Swift symbols. And there was much wailing and gnashing of teeth
as loaders everywhere disregarded loading these content-less Swift
libraries.
So, a solution was found - a magical symbol _swift_FORCE_LOAD_$_<MODULE>
that forced the loaders to heed the dependency on a Swift library
regardless of its content. It was a constant with common linkage, and it
was good. But, along came COFF which needed to support autolinking but
had no support for such matters. It did, however, have support for
COMDAT sections into which we placed the symbol. Immediately, a darkness
fell across the land as the windows linker loudly proclaimed it had
discovered a contradiction: "_swift_FORCE_LOAD_$_<MODULE> cannot be
a constant!", it said, gratingly, "for this value requires rebasing."
Undeterred, we switched to a function instead, and the windows linker
happily added a level of indirection to its symbol resolution procedure
and all was right with the world.
But this definition was not all right. In order to support multiple
translation units emitting it, and to prevent the linker from dead
stripping it, Weak ODR linkage was used. Weak ODR linkage has the nasty
side effect of pessimizing load times since the dynamic linker must
assume that loading a later library could produce a more definitive
definition for the symbol.
A compromise was drawn up: To keep load times low, external linkage was
used. To keep the linker from complaining about multiple strong
definitions for the same symbol, the first translation unit in the
module was nominated to recieve the magic symbol. But one final problem
remained:
Incremental builds allow for files to be added or removed during the
build procedure. The placement of the symbol was therefore dependent
entirely upon the order of files passed at the command line. This was no
good, so a decree was set forth that using -autolink-force-load and
-incremental together was a criminal offense.
So we must compromise once more: Return to a symbol with common linkage,
but only on Mach-O targets. Preserve the existing COMDAT-friendly
approach everywhere else.
This concludes our tale.
rdar://77803299
When building a static library with debug information, do not create a
dSYM generation job as it cannot be executed on a non-image target.
This is important for the case where the single invocation is both the
compile and link job.
This was detected in conjunction with @gottesmm.
If the compiler arguments have errors in them (e.g. because a file with the same name is used twice), we can often still fulfill SourceKit requests because the compiler argument errors are only relevant for later stages of the compilation process.
Instead of bailing out early, do a best effor retrieving the compiler arguments that are valid and ignoring the errors.
Fixes rdar://77618144