Specifically the type checker to work around interface types not having
isolation introduces casts into the AST that enrich the AST with isolation
information. Part of that information is Sendable. This means that we can
sometimes lose due to conversions that a function is actually Sendable. To work
around this, we today suppress those errors when they are emitted (post 6.2, we
should just change their classification as being Sendable... but I don't want to
make that change now).
This change just makes the pattern matching for these conversions handle more
cases so that transfernonsendable_closureliterals_isolationinference.swift now
passes.
Centralize the logic for figuring out the conformances for the various
init_existential* instructions in a SILIsolationInfo static method, and
always go through that when handling "assign" semantics. This way, we
can use CONSTANT_TRANSLATION again for these instructions, or a simpler
decision process between Assign and LookThrough.
The actually undoes a small change made earlier when we stopped looking
through `init_existential_value` instructions. Now we do when there are
no isolated conformances.
Better match the style of SILIsolationInfo by moving the code for determining
SILIsolationInfo from conformances or dynamic casts to existentials into
static `getXYZ` methods on SILIsolationInfo.
Other than adding an assertion regarding disconnected regions, no
intended functionality change.
When we introduce isolation due to a (potential) isolated conformance,
keep track of the protocol to which the conformance could be
introduced. Use this information for two reasons:
1. Downgrade the error to a warning in Swift < 7, because we are newly
diagnosing these
2. Add a note indicating where the isolated conformance could be introduced.
Specifically in terms of printing, if NonisolatedNonsendingByDefault is enabled,
we print out things as nonisolated/task-isolated and @concurrent/@concurrent
task-isolated. If said feature is disabled, we print out things as
nonisolated(nonsending)/nonisolated(nonsending) task-isolated and
nonisolated/task-isolated. This ensures in the default case, diagnostics do not
change and we always print out things to match the expected meaning of
nonisolated depending on the mode.
I also updated the tests as appropriate/added some more tests/added to the
SendNonSendable education notes information about this.
I am doing this so that I can change how we emit the diagnostics just for
SendNonSendable depending on if NonisolatedNonsendingByDefault is enabled
without touching the rest of the compiler.
This does not actually change any of the actual output though.
This results in wrong argument/return calling conventions.
First, the method call must be specialized. Only then the call can be de-virtualized.
Usually, it's done in this order anyway, because the `class_method` instruction is located before the `apply`.
But when inlining functions, the order (in the worklist) can be the other way round.
Fixes a compiler crash.
rdar://154631438
This pass replaces `alloc_box` with `alloc_stack` if the box is not escaping.
The original implementation had some limitations. It could not handle cases of local functions which are called multiple times or even recursively, e.g.
```
public func foo() -> Int {
var i = 1
func localFunction() { i += 1 }
localFunction()
localFunction()
return i
}
```
The new implementation (done in Swift) fixes this problem with a new algorithm.
It's not only more powerful, but also simpler: the new pass has less than half lines of code than the old pass.
The pass is invoked in the mandatory pipeline and later in the optimizer pipeline.
The new implementation provides a module-pass for the mandatory pipeline (whereas the "regular" pass is a function pass).
This is required because the mandatory pass needs to remove originals of specialized closures, which cannot be done from a function-pass.
In the old implementation this was done with a hack by adding a semantic attribute and deleting the function later in the pipeline.
I still kept the sources of the old pass for being able to bootstrap the compiler without a host compiler.
rdar://142756547
* add `cloneFunctionBody` without an `entryBlockArguments` argument
* remove the `swift::ClosureSpecializationCloner` from the bridging code and replace it with a more general `SpecializationCloner`
Originally this was a "private" utility for the ClosureSpecialization pass.
Now, make it a general utility which can be used for all kind of function specializations.
OSSA lifetime canonicalization can take a very long time in certain
cases in which there are large basic blocks. to mitigate this, add logic
to skip walking the liveness boundary for extending liveness to dead
ends when there aren't any dead ends in the function.
Updates `DeadEndBlocks` with a new `isEmpty` method and cache to
determine if there are any dead-end blocks in a given function.
* re-implement the pass in swift
* support alloc_stack liveranges which span over multiple basic blocks
* support `load`-`store` pairs, copying from the alloc_stack (in addition to `copy_addr`)
Those improvements help to reduce temporary stack allocations, especially for InlineArrays.
rdar://151606382
Introduce a new pass MandatoryTempRValueElimination, which works as the original TempRValueElimination, except that it does not remove any alloc_stack instruction which are associated with source variables.
Running this pass at Onone helps to reduce copies of large structs, e.g. InlineArrays or structs containing InlineArrays.
Copying large structs can be a performance problem, even at Onone.
rdar://151629149
Add a boolean parameter `salvageDebugInfo` to `Context.erase(instruction:)`.
Sometimes it needs to be turned off because the caller might require that after erasing the original instruction the operands no users anymore.
Beside cleaning up the source code, the motivation for the translation into Swift is to make it easier to improve the pass for some InlineArray specific optimizations (though I'm not sure, yet if we really need those).
Also, the new implementation doesn't contain the optimize-store-into-temp optimization anymore, because this is covered by redundant load elimination.
When the utility is used by the ConsumeOperatorCopyableValuesChecker,
the checker guarantees that the lifetime can end at the consumes, that
there are no uses after those consumes. In that circumstance, the
utility maintains liveness to those consumes and as far as possible
without introducing a copy everywhere else.
The lack of complete lifetimes has forced the utility to extend liveness
of values to dead-ends. That extension, however, is in tension with the
use that the checker is putting the utility to. If there is a dead-end
after a consume, liveness must not be maintained to that dead-end.
rdar://147586673
[rbi] Simplify some logic that got confused so that passing an actor isolated value to a callee that is isolated ot the same actor is not considered a send.
The logic here got confused over time. This simplifies the logic and ensures
that we do not send a value if it is in the same isolation domain as the callee.
The one interesting side effect of this is that in a few tests, due to the logic
being confused, we were emitting use-after-send errors for global actor isolated
values that were passed to a function that was global actor isolated to the same
actor and then used later locally. The error was sending 'X'-isolated a to
'X'-isolated function causes race against nonisolated local uses. In truth, this
error is misleading and the only error that we should be emitting in such a case
is the error about moving an isolated value into a non-isolated context (which
we already emit).
rdar://132932382
1. move embedded diagnostics out of the PerformanceDiagnostics pass. It was completely separated from the other logic in this pass, anyway.
2. rewrite it in swift
3. fix several bugs, that means: missed diagnostics, which led to IRGen crashes
* look at all methods in witness tables, including base protocols and associated conformances
* visit all functions in the call tree, including generic functions with class bound generic arguments
* handle all instructions, e.g. concurrency builtins
4. improve error messages by adding meaningful call-site information. For example:
* if the error is in a specialized function, report where the generic function is originally specialized with concrete types
* if the error is in a protocol witness method, report where the existential is created
For example:
```
protocol P: AnyObject {
func foo()
}
extension P {
func foo() {}
}
class C: P {}
let e: any P = C()
```
Such default methods are SILGen'd with a generic self argument. Therefore we need to specialize such witness methods, even if the conforming type is not generic.
rdar://145855851
Store specialize witness tables in a separate lookup table in the module. This allows that for a normal conformance there can exist the original _and_ a specialized witness table.
Also, add a boolean property `isSpecialized` to `WitnessTable` which indicates whether the witness table is specialized or not.
Otherwise, we can be inconsistent with isolations returned by other parts of the
code. Previously we were just treating it always as self + nom decl, which is
clearly wrong if a type is not self (e.x.: if it is an isolated parameter).
rdar://135459885