This currently doesn't check for inherited docs, ie. either the
imported declaration has docs or it doesn't. There's also a few odd
cases with mixed doc types and when each line is prefixed with '*', but
it's good enough for an initial implementation.
Moves UTF8 sanitisation out of ASTPrinter.h and into Unicode.h so that
it can be used here as well.
Resolves rdar://91388603.
Since this implementation is exposed to users, we want to make it nice.
* Don't use 'unsafelyUnwrapped' which is usually not recommended to use
* Don't access 'container.allKeys' multiple times as it's a computed
property
rdar://89150202
We need to check the feature availability of _unavailableFromAsync
before it gets picked up in the swift interface file. This updates the
compiler to provide the necessary wrappings for that check.
and make `@_unsafeInheritExecutor` a suppressible feature.
Some language features are required in order to parse a
declaration correctly, but some can safely be ignored.
For the latter, we'd like the module interface to simply
contain the declaration twice, once with the feature and
once without. Some basic support for that was already
added for the SpecializeAttributeWithAvailability feature,
but it didn't interact correctly with required features
that might be checked in the same `#if` clause (it simply
introduced an `#else`), and it wasn't really set up to
allow multiple features to be handled this way. There
were also a few other places that weren't updated to
handle this, presumably because they never coincided
with a `@_specialize` attribute.
Introduce the concept of a suppressible feature, which
is anything that the ASTPrinter can modify the current
PrintOptions in order to suppress. Restructure the
printing of compatibility checks so that we can print
the body multiple times with different settings.
Print required feature checks in an outer `#if...#endif`,
then perform a separate `#if...#else...#endif` within
if we have suppressible features. If there are multiple
suppressible features, check for the most recent first,
on the assumption that it will imply the rest; then
perform subsequent checks with an `#elsif` clause.
This should be a far more solid foundation on which to
build compatibility checks in the future.
`@_unsafeInheritExecutor` needs to be suppressible
because it's been added to some rather important
existing APIs. Simply suppressing the entire decl will
effectively block old tools from using a new SDK to
build many existing projects (if they've adopted
`async`). Dropping the attribute changes the semantics
of these functions, but only if the compiler features
the SE-0338 scheduling change; this is a very narrow
window of main-branch development builds of the tools,
none of which were officially released.
SE-0338 changed the execution of non-actor async functions
so that they always hop to the generic executor, but some
functions need a way to suppress this so that they inherit
the caller's executor.
The right way to implement this is to have the caller pass
down the target executor in some reliable way and then
switch to it in all the appropriate places in the caller.
We might reasonably be able to build this on top of isolated
parameters, using some sort of default argument, or we might
need a wholly novel mechanism.
But those things are all ABI-breaking absent some sort of
guarantee about switching that we probably don't want to make,
and unfortunately we have functions in the library which we
need to export that need to inherit executors. So in the
short term, we need some unsafe way of getting back to the
previous behavior.
The RequirementSignature generalizes the old ArrayRef<Requirement>
which stores the minimal requirements that a conforming type's
witnesses must satisfy, to also record the protocol typealiases
defined in the protocol.
Clients can explicitly ask for the opened existential type on the archetype's generic environment,
or use `getExistentialType` to obtain a specific archetype's upper bounds.
When printing the generic parameters and requirements clauses of
declarations that involve opaque parameters, suppress the implicit
generic parameters created by the opaque parameters as well as the
generic requirements that involve said parameters.
Implement function parameters of the form `some P` be synthesizing an
implicit generic parameter whose requirements come from the opaque
type. We then map the opaque type back to the generic parameter, and
print as the opaque type. This allows us to write functions with
implicit generic parameters:
```swift
func f(_: some Collection) { }
```
which is equivalent to:
```swift
func f<T: Collection>(_: some T) { }
```
where `T` is an otherwise-unused generic parameter name.
All of this is behind the experimental frontend flag
`-enable-experimental-opaque-parameters`.
If a method has an `async` variant, the non-`async` variant will now mark its completion handler parameter `@Sendable`. This shouldn't be a breaking change in Swift 5 code since these declarations are automatically `@_predatesConcurrency`.
Also adds:
• Support for `@_nonSendable` on parameters, which can be used to override this implicit `@Sendable`
• Support for `@Sendable` on block typedefs; it's generally going to be a good idea to mark completion block typedefs `@Sendable`.
Fixes rdar://85569247.
Ultimately this is to support the disambiguation of protocol requirements when printing stubs. This allows us to disambiguate the case where two modules declare a nominal type, and when that type appears in a protocol requirement. In such a case, we now fully qualify the types involved.
Fixing this also appears to now be consistently printing module qualification in many more places, hence the updates to the IDE/SourceKit tests.
rdar://72830118
Nested archetypes are represented by their base archetype kinds (primary,
opened, or opaque type) with an interface type that is a nested type,
as represented by a DependentMemberType. This provides a more uniform
representation of archetypes throughout the frontend.
As another step toward eliminating NestedArchetypeType, generalize the
representation, construction, and serialization of primary and sequence
archetypes to interface types, rather than generic parameter types.
are printed with the `any` keyword.
For now, printing `any` is off by default in order to turn on explicit
existential types with minimal changes to the test suite. The option
will also allow control over how existential types are printed in
Swift interfaces.
Add new `-print-ast-decl` frontend option for only printing declarations,
to match existing behavior.
Some tests want to print the AST, but don't care about expressions.
The existing `-print-ast` option now prints function bodies and expressions.
Not all expressions are printed yet, but most common ones are.
There are three major changes here:
1. The addition of "SILFunctionTypeRepresentation::CXXMethod".
2. C++ methods are imported with their members *last*. Then the arguments are switched when emitting the IR for an application of the function.
3. Clang decls are now marked as foreign witnesses.
These are all steps towards being able to have C++ protocol conformance.
Address small gaps in several places to make named opaque result types
partially work:
* Augment name lookup to look into the generic parameters when inside the
result type, which is used both to create structure and add requirements
via a `where` clause.
* Resolve opaque generic type parameter references to
OpaqueTypeArchetypeType instances, as we do for the "some" types
* Customize some opaque-type-specific diagnostics and type printing to
refer to the opaque generic parameter names specifically
* Fix some minor issues with the constraint system not finding
already-opened opaque generic type parameters and with the handling of
the opaque result type candidate set.
The major limitation on opaque types, where we cannot add requirements
that aren't strictly protocol or superclass requirements on the
generic parameters, remains. Until then, named opaque result types are
no more expressive than structural opaque result types.
A PackExpansionType is the interface type of the explicit expansion of a
corresponding set of variadic generic parameters.
Pack expansions are spelled as single-element tuples with a single variadic
component in most contexts except functions where they are allowed to appear without parentheses to match normal variadic declaration syntax.
```
func expand<T...>(_ xs: T...) -> (T...)
~~~~ ~~~~~~
```
A pack expansion type comes equipped with a pattern type spelled before
the ellipses - `T` in the examples above. This pattern type is the subject
of the expansion of the pack that is tripped when its variadic generic
parameter is substituted for a `PackType`.
A pack type looks a lot like a tuple in the surface language, except there
is no way for the user to spell a pack. Pack types are created by the solver
when it encounters an apply of a variadic generic function, as in
```
func print<T...>(_ xs: T...) {}
// Creates a pack type <String, Int, String>
print("Macs say Hello in", 42, " different languages")
```
Pack types substituted into the variadic generic arguments of a
PackExpansionType "trip" the pack expansion and cause it to produce a
new pack type with the pack expansion pattern applied.
```
typealias Foo<T...> = (T?...)
Foo<Int, String, Int> // Forces expansion to (Int?, String?, Int?)
```
explicit existential types are enabled.
Note that existential metatypes still resolve to ExistentialMetatypeType,
but later this type can be replaced with ExistentialType(MetatypeType).
The new type, called ExistentialType, is not yet used in type resolution.
Later, existential types written with `any` will resolve to this type, and
bare protocol names will resolve to this type depending on context.