Protocol conformances have a handful attributes that can apply to them
directly, including @unchecked (for Sendable), @preconcurrency, and
@retroactive. Generalize this into an option set that we carry around,
so it's a bit easier to add them, as well as reworking the
serialization logic to deal with an arbitrary number of such options.
Use this generality to add support for @unsafe conformances, which are
needed when unsafe witnesses are used to conform to safe requirements.
Implement general support for @unsafe conformances, including
producing a single diagnostic per missing @unsafe that provides a
Fix-It and collects together all of the unsafe witnesses as notes.
Sema now type-checks the alternate ABI-providing decls inside of @abi attributes.
Making this work—particularly, making redeclaration checking work—required making name lookup aware of ABI decls. Name lookup now evaluates both API-providing and ABI-providing declarations. In most cases, it will filter ABI-only decls out unless a specific flag is passed, in which case it will filter API-only decls out instead. Calls that simply retrieve a list of declarations, like `IterableDeclContext::getMembers()` and friends, typically only return API-providing decls; you have to access the ABI-providing ones through those.
As part of that work, I have also added some basic compiler interfaces for working with the API-providing and ABI-providing variants. `ABIRole` encodes whether a declaration provides only API, only ABI, or both, and `ABIRoleInfo` combines that with a pointer to the counterpart providing the other role (for a declaration that provides both, that’ll just be a pointer to `this`).
Decl checking of behavior specific to @abi will come in a future commit.
Note that this probably doesn’t properly exercise some of the new code (ASTScope::lookupEnclosingABIAttributeScope(), for instance); I expect that to happen only once we can rename types using an @abi attribute, since that will create distinguishable behavior differences when resolving TypeReprs in other @abi attributes.
This attribute will allow you to specify an alternate version of the declaration used for mangling. It will allow minor adjustments to be made to declarations so long as they’re still compatible at the calling convention level, such as refining isolation or sendability, renaming without breaking ABI, etc.
The attribute is behind the experimental feature flag `ABIAttribute`.
The `@differentiable` and `@derivative` attributes need a parent pointer. Move the code to populate it from Parser to AST so it can be more easily shared between the parsers.
Done in preparation for similar code to be added for `@abi`.
This new attribute iterator returned from the query makes it simpler to
implement algorithms that need access to both the `AvailableAttr *` and its
corresponding `AvailabilityDomain`. This is also work towards making it
possible to return an optional `AvailabilityDomain` from
`Decl::getDomainForAvailableAttr()`.
Emit an imported declaration for @_originallyDefinedIn under the
real module that these types live in.
This patch also changes the mangling for the debugger to respect
@_originallyDefinedIn, and fixes a bug where @_originallyDefinedIn
that should be ignored was still being used when mangling.
rdar://137146961
When a declaration is `@unsafe`, don't emit strict safety diagnostics
for uses of unsafe entities, constructs, or types within it. This
allows one to account for all unsafe behavior in a module using strict
memory safety by marking the appropriate declarations `@unsafe`.
Enhance the strict-safety diagnostics to suggest the addition of
`@unsafe` where it is needed to suppress them, with a Fix-It. Ensure
that all such diagnostics can be suppressed via `@unsafe` so it's
possible to get to the above state.
Also includes a drive-by bug fix where we weren't diagnosing unsafe
methods overriding safe ones in some cases.
Fixes rdar://139467327.
Since the introduction of custom attributes (as part of property
wrappers), we've modeled the context of expressions within these
attributes as PatternBindingInitializers. These
PatternBindingInitializers would get wired in to the variable
declarations they apply to, establishing the appropriate declaration
context hierarchy. This worked because property wrappers only every
applied to---you guessed it!---properties, so the
PatternBindingInitializer would always get filled in.
When custom attributes were extended to apply to anything for the
purposes of macros, the use of PatternBindingInitializer became less
appropriate. Specifically, the binding declaration would never get
filled in (it's always NULL), so any place in the compiler that
accesses the binding might have to deal with it being NULL, which is a
new requirement. Few did, crashes ensued.
Rather than continue to play whack-a-mole with the abused
PatternBindingInitializer, introduce a new CustomAttributeInitializer
to model the context of custom attribute arguments. When the
attributes are assigned to a declaration that has a
PatternBindingInitializer, we reparent this new initializer to the
PatternBindingInitializer. This helps separate out the logic for
custom attributes vs. actual initializers.
Fixes https://github.com/swiftlang/swift/issues/76409 / rdar://136997841
Just because the type of the initializer expression is an opaque return type,
does not mean it is the opaque return type *for the variable being initialized*.
It looks like there is a bit of duplicated logic and layering violations going
on so I only fixed one caller of openOpaqueType(). This addresses the test case
in the issue. For the remaining calls I added FIXMEs to investigate what is
going on.
Fixes https://github.com/swiftlang/swift/issues/73245.
Fixes rdar://127180656.
Many APIs using nonescapable types would like to vend interior pointers to their
parameter bindings, but this isn't normally always possible because of representation
changes the caller may do around the call, such as moving the value in or out of memory,
bridging or reabstracting it, etc. `@_addressable` forces the corresponding parameter
to be passed indirectly in memory, in its maximally-abstracted representation.
[TODO] If return values have a lifetime dependency on this parameter, the caller must
keep this in-memory representation alive for the duration of the dependent value's
lifetime.
Also remove the underlying `SemanticUnavailableAttrRequest`, which used memory
very inefficiently in order to cache a detailed answer to what was usually a
much simpler question.
The only remaining use of `Decl::getSemanticUnavailableAttr()` that actually
needed to locate the semantic attribute making a declaration unavailable was in
`TypeCheckAttr.cpp`. The implementation of the request could just be used
directly in that one location. The other remaining callers only needed to know
if the decl was unavailable or not, which there are simpler queries for.
# Please enter the commit message for your changes. Lines starting
The renamed decl is now stored exclusively in the split request evaluator
storage, which is more efficient since most availability attributes do not
specify a renamed decl.
Previously, they were being parsed as top-level code, which would cause
errors because there are no definitions. Introduce a new
GeneratedSourceInfo kind to mark the purpose of these buffers so the
parser can handle them appropriately.
When a protocol which has a read (or modify) requirement is built with
the CoroutineAccessors feature, it gains a read2 (or modify2,
respectively) requirement. For this to be compatible with binaries
built without the feature, a default implementation for these new
requirements must be provided. Cause these new accessor requirements to
have default implementations by returning `true` from
`doesAccessorHaveBody` when the context is a `ProtocolDecl` and the
relevant availability check passes.
Move the bailout from getSynthesizedAccessor from the wrapper function
into the evaluate body. Will enable the request to do work on
non-synthesized accessors, which is required to provide a default
implementation for modify2 and read2 members.
Mangling and looking up the opaque result type decl
for serialized decls is a fairly expensive
operation. Instead, fallthrough to the request
which will have a cached value set by deserialization.
This shaves ~30ms off the cached completion for:
```swift
import SwiftUI
struct V: View {
var body: some View {
Table(#^CC^#
}
}
```
A recent PR (#77204) started to import C++ source locations into Swift.
This PR flips a switch so these locations are actually used more widely.
Now some of the diagnostic locations are changed, but they generally
improved the quality of the diagnostics, pointing out conformances
imported from Obj-C code right when they are declared.
Occasionally, when the Swift compiler emits a diagnostic for a construct
that was imported from C++ we get a diagnostic with unknown location.
This is a bad user experience. It is particularly bad with the
borrow-checker related diagnostics. This patch extends the source
location importing to declarations in ClangImporter. There are some
invariants enforced by the Swift compile, e.g., a source range is
comprised of two valid source locations or two invalid ones. As a
result, this patch adds approximate source locations to some separators
like braces or parens that are not maintained by Clang. Having slightly
incorrect ranges in this case is better than emitting unknown source
locations.
If the feature is enabled, base the requirement for the underscored
accessors on the availability of the non-underscored accessors. If the
(non-underscored) accessor's was available earlier than the feature,
interpret that to mean that the underscored version was available in
that earlier version, and require the underscored version. The goal is
to ensure that the ABI is preserved, so long as the simplest migration
is done (namely, deleting the underscores from the old accessors).
For modify2, cache the required-ness in the same way that it is cached
for modify.