The isDependentType() query is woefully misunderstood. Some places
seem to want it to mean "a generic type parameter of dependent member
type", which corresponds to what is effectively a type parameter in
the language, while others want it to mean "contains a type parameter
anywhere in the type". Tease out these two meanings in
isTypeParameter() and hasTypeParameter(), respectively, and sort out
the callers.
Swift SVN r29945
The callback (which is used for creating CG nodes) was lost when deserializing the functions of a vtable.
Fixes rdar://problem/21609902
Swift SVN r29838
When debugging a compiler, using -debug would crash the compiler on some witness_method instructions, because sometimes their conformances are empty (e.g. if the type being looked-up is an archetype or an existential).
Swift SVN r27325
The two ways functions are created currently is via the two
SILModule::getOrCreateFunction(). One of the methods, takes in a raw mangled
name and uses that to create the function. The other takes in a SILDeclRef to
generate the mangled name. Most function emission (besides some thunk creation
functions) goes through the latter. For now we update the map there. This is ok,
since this map will only be used to provide extra verification that guaranteed
self is occuring everywhere that it is supposed to (since constructors and
destructors still have @owned self).
Swift SVN r27240
Previous attempts to update the callgraph explicitly after calls to
linkFunction() weren't completely effective because we can deserialize
deeply and introduce multiple new function bodies in the process.
This gets us a bit closer, but only adds new call graph nodes. It does
not currently add edges for everything that gets deserialized (and this
is not fatal, so it is a step forward).
Swift SVN r27120
This API is more convenient than using the old getOrCreate API, which requires 9 parameters to be provided.
I'm going to use this API in the subsequent commits.
Swift SVN r27097
Before, providing a full SILFunction declaration object with a proper SILType was the only way to link a function. And constructing such a SILFunction declaration by hand using low-level SIL APIs is very annoying and requires a lot of code to be written. This new linkFunction API allows for a lookup using SILDeclRef and essentially performs linking of a SILFunction by its mangled name (assuming this name is unique), which is much easier to invoke. The new API is useful, e.g. when you need to link a well-known function from a standard library.
Swift SVN r26252
This is only used by SILModule but is not integral to a SILModule so it makes
sense to have it in its own file. It keeps SILModule.cpp more focused. We still
keep it in a private header though since it is only meant to be used by
SILModule.cpp.
Swift SVN r25985
For better consistency with other address-only instruction variants, and to open the door to new exciting existential representations (such as a refcounted boxed representation for ErrorType).
Swift SVN r25902
This will have an effect on inlining into thunks.
Currently this flag is set for witness thunks and thunks from function signature optimization.
No change in code generation, yet.
Swift SVN r24998
1. Eliminate unused variable warnings.
2. Change field names to match capitalization of the rest of the field names in the file.
3. Change method names to match rest of the file.
4. Change get,set method for a field to match the field type.
Swift SVN r24501
This bug would manifest itself only when a module with multiple files is being compiled and some derived classes are defined in a file different from the one where a base class is defined. Due to this bug a method from a base class would be invoked instead of a method from a derived class when devirtualization was performed. The problem was that we were saying that failure to link a vtable is equivalent to failure to find a function in the vtable itself in which case we would go up to the parent vtable.
To avoid this kind of bug in the future a test case with a module consisting of multiple files is added to the test suite.
rdar://19334105 rdar://19337398
Swift SVN r24264
The underlying problem is that e.g. even if a method is private but its class is public, the method can be referenced from another module - from the vtable of a derived class.
So far we handled this by setting the SILLinkage of such methods according to the visibility of the class. But this prevented dead method elimination.
Now I set the SILLinkage according to the visibility of the method. This enables dead method elimination, but it requires the following:
1) Still set the linkage in llvm so that it can be referenced from outside.
2) If the method is dead and eliminated, create a stub for it (which calls swift_reportMissingMethod).
Swift SVN r23889
This should have been done a long time ago since SILOptions are options that
should be able to effect everything SIL related. In this case I just want to
pass in a flag on the SILModule to enable +0 self. By putting it on the
SILModule I can conveniently check it in SILFunctionType without exposing any
internal state from SILFunctionType.cpp.
Swift SVN r23647
This allows making global addressors fragile (They use globalinit_{token,func} for initialization of globals).
It has no noticable performance impact on our benchmarks, but it removes an ugly hack which explicitly
prevented addressors from being fragile.
Swift SVN r22812
This allows making global addressors fragile (They use globalinit_{token,func} for initialization of globals).
It has no noticable performance impact on our benchmarks, but it removes an ugly hack which explicitly
prevented addressors from being fragile.
Swift SVN r22795
This is controlled by a new isWholeModule() attribute in SILModule.
It gives about 9% code size reduction on the benchmark executables.
For test-suite reasons it is currently not done for the stdlib.
Swift SVN r22491
This prevented dead function removal of inlined dead functions. Beside the stdlib it's mostly
an issue of SIL size (and therefore compiletime), because llvm did remove such functions anyway.
Swift SVN r22301
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
It is defaulted to nullptr. When it is set, we increment the SILFunction's
ref count to keep it alive.
It will be used in followon patches for globals that can be statically
initialized.
Swift SVN r21983
*NOTE* This linkage is different from {Public,Hidden}External in that it has no
extra semantic meaning beyond shared.
The use of this linkage is to ensure that we do not serialize deserialized
shared functions. Those shared functions can always be re-deserialized from the
original module. This prevents a whole class of bugs related to the
creation of module cross references since all references to the shared
item go straight to the original module.
<rdar://problem/17772847>
Swift SVN r20375
info for them and generally clean up the inline scope handling a bit.
Fix the debug scope handling for all clients of SILCloner, especially
the SIL-level spezializers and inliners.
This also adds a ton of additional assertions that will ensure that
future optimization passes won't mess with the debug info in a way that
could confuse the LLVM backend.
Swift SVN r18984
Mandatory-inlined (aka transparent functions) are still treated as if they
had the location and scope of the call site. <rdar://problem/14845844>
Support inline scopes once we have an optimizing SIL-based inliner
Patch by Adrian Prantl.
Swift SVN r18835
The deserializer holds a reference to the deserialized SILFunction, which
prevents Dead Function Elimination from erasing them.
We have a tradeoff on how often we should clean up the unused deserialized
SILFunctions. If we clean up at every optimization iteration, we may
end up deserializing the same SILFunction multiple times. For now, we clean
up only after we are done with the optimization iteration.
rdar://17046033
Swift SVN r18697
If a source file contains the main class for its module, then implicitly emit a top_level_code that invokes UIApplicationMain with the name of the marked class.
Swift SVN r18088
Pattern matching on whether or not the function was applied is fragile
in the face of various possible compositions in between the function_ref
and the apply (i.e. thin_to_thick_function as an example).
Lets be conservative and just always deserialize references to closures
during mandatory inlining when referenced via a function_ref so we avoid
this problem if additional instructions like this are added.
Swift SVN r17977
We now enforce via an assert that each witness table is unique and that
every protocol conformance that is referenceable from SIL must have a
witness table matched to it.
Also, I taught the linker that it should deserialize witness tables for
InitExistentialRefInst instructions, something that was missed before.
Swift SVN r17283