Function bodies are skipped during typechecking when one of the
-experimental-skip-*-function-bodies flags is passed to the frontend. This was
implemented by setting the "body kind" of an `AbstractFunctionDecl` during decl
checking in `TypeCheckDeclPrimary`. This approach had a couple of issues:
- It is incompatible with skipping function bodies during lazy typechecking,
since the skipping is only evaluated during a phase of eager typechecking.
- It prevents skipped function bodies from being parsed on-demand ("skipped" is
a state that is distinct from "parsed", when they ought to be orthogonal).
This needlessly prevented complete module interfaces from being emitted with
-experimental-skip-all-function-bodies.
Storing the skipped status of a function separately from body kind and
requestifying the determination of whether to skip a function solves these
problems.
Resolves rdar://116020403
Plus tweak `DefaultDefinitionTypeRequest` caching to support querying the
cached type when dumping. This fixes a crash where type computation is
triggered in the dumper before import resolution in `-dump-parse` mode.
Previously, fully qualified types would be missing for global vars and
properties in `.swiftinterface` files that were emitted lazily.
Adding the test case also revealed that PatternBindingDecls needed to be
typechecked before lazy module serialization as well.
Provide member macros with similar information about conformances to
what extension macros receive, allowing member macros to document
which conformances they care about (e.g., Decodable) and then
receiving the list of conformances that aren't already available for
the type in question. For example, a macro such as
@attached(member, conformances: Decodable, Encodable, names:
named(init(from:), encode(to:)))
macro Codable() = ...
Expanded on a type that is not already Decodable/Encodable would be
provided with Decodable and Encodable (via the new
`missingConformancesTo:` argument to the macro implementation) when
the type itself does not conform to those types.
Member macros still cannot produce conformances, so this is likely to
be used in conjunction with extension macros most of the time. The
extension macro declares the conformance, and can also declare any
members that shouldn't be part of the primary type definition---such
as initializers that shouldn't suppress the memberwise initializer. On
the other hand, the member macro will need to define any members that
must be in the primary definition, such as required initializers,
members that must be overridable by subclasses, and stored properties.
Codable synthesis is an example that benefits from member macros with
conformances, because for classes it wants to introduce a required
initializer for decoding and an overridable encode operation, and
these must be members of the nominal type itself. Specifically, the
`Codable` macro above is likely to have two attached member roles:
@attached(member, conformances: Decodable, Encodable, names:
named(init(from:), encode(to:)))
@attached(extension, conformances: Decodable, Encodable, names:
named(init(from:), encode(to:)))
macro Codable() = ...
where the "extension" role is responsible for defining the conformance
(always), and the "member" creates the appropriate members for classes
(`init` vs. `required init`).
Tracked by rdar://112532829.
- Add a flag to the serialized module (IsEmbeddedSwiftModule)
- Check on import that the mode matches (don't allow importing non-embedded module in embedded mode and vice versa)
- Drop TBD support, it's not expected to work in embedded Swift for now
- Drop auto-linking backdeploy libraries, it's not expected to backdeploy embedded Swift for now
- Drop prespecializations, not expected to work in embedded Swift for now
- Use CMO to serialize everything when emitting an embedded Swift module
- Change SILLinker to deserialize/import everything when importing an embedded Swift module
- Add an IR test for importing modules
- Add a deserialization validation test
Replace the `front()` and `back()` accessors on `InheritedTypes` with dedicated
functions for accessing the start and end source locations of the inheritance
clause. NFC.
Wrap the `InheritedEntry` array available on both `ExtensionDecl` and
`TypeDecl` in a new `InheritedTypes` class. This class will provide shared
conveniences for working with inherited type clauses. NFC.
Cache a bit on `EnumDecl` indicating whether there are any elements that are
unavailable during lowering and then use that bit to decided whether to attempt
optimization for `switch_enum`/`switch_enum_addr` instructions.
Unavailable enum elements cannot be instantiated at runtime without invoking
UB. Therefore the optimizer can consider a basic block unreachable if its only
predecessor is a block that terminates in a switch instruction matching an
unavailable enum element. Furthermore, removing the switch instruction cases
that refer to unavailable enum elements is _mandatory_ when
`-unavailable-decl-optimization=complete` is specified because otherwise
lowered IR for these instructions could refer to enum tag accessors that will
not be lowered, resulting in a failure during linking.
Resolves rdar://113872720.
Introduce `AvailableDuringLoweringDeclFilter` which can be composed with
`OptionalTransformRange` to implement iterators that filter out unavailable
decls.
Moving the query implementation up to the AST library from SIL will allow
conveniences to be written on specific AST element classes. For instance, this
will allow `EnumDecl` to expose a convenience that enumerates element decls
that are available during lowering.
Also, improve naming and documentation for these queries.
This is a futile attempt to discourage future use of getType() by
giving it a "scary" name.
We want people to use getInterfaceType() like with the other decl kinds.
llvm::Optional had a constructor that took a const l-value
reference, but std::optional does not, resulting in build failures when
returning bit-fields in optionals. Casting the bit-field to the
appropriate type fixes this.
As with the initial value of a property that is converted from a stored
property to a computed property by an accessor macro, remove
didSet/willSet. It is the macro's responsibility to incorporate their
code or diagnose them.
Fixes rdar://111101833.
Eliminate the error message
error: global freestanding macros not yet supported in script mode
by implementing name lookup, type checking, and code emission for
freestanding macros. The key problem here is that, in script mode,
it is ambiguous whether a use of a freestanding macro is an expression
or a declaration. We parse as an expression (as we do within a
function body), which then gets wrapped in a top-level code
declaration.
Teach various parts of the compiler to look through a top-level code
declaration wrapping a macro expansion expression that is for a
declaration or code-item macro, e.g., by recording these for global
name lookup and treating their expansions as "auxiliary" declarations.
Fixes rdar://109699501.
stated in the original source.
If an extension macro can introduce protocol conformances, macro expansion
will check which of those protocols already have a stated conformance in the
original source. The protocols that don't will be passed as arguments to
extension macro expansion, indicating to the macro that it should only add
conformances to those protocols.
This basically undoes 3da6fe9c0d, which in hindsight was wrong.
There were no other usages of TypeArrayView anywhere else except for
GenericSignature::getGenericParams(), and it was almost never what
you want, so callers had to convert back and forth to an ArrayRef.
Remove it.