Remove `IRGenModule::useDllStorage()` as there is a standalone version
that is available and the necessary information is public from the
`IRGenModule` type. Additionally, avoid the wrapped `isStandardLibrary`
preferring to use the same method off of the public accessors. This
works towards removing some of the standard library special casing so
that it is possible to support both static and dynamic standard
libraries on Windows.
In C++, a primary base class that is placed in the beginning of the type's memory layout isn't always the type that is the first in the list of bases – the base types might be laid out in memory in a different order.
This makes sure that IRGen handles base types of C++ structs in the correct order.
This fixes an assertion in asserts-enabled compilers, and an out-of-memory error in asserts-disabled compilers. The issue was happening for both value types and foreign reference types. This change also includes a small refactoring to reuse the logic between the two code paths.
rdar://140848603
When compiling with library evolution and a pre-Swift 6.0 deployment
target, a mismatch between the notion of resilience used for determining
whether a protocol that inherits Sendable might need to be treated as
"dependent" differed from how other parts of IR generation decided
whether to conformance should be considered as resilient. The
difference came when both the protocol and its conforming type are in
the same module as the user.
Switch over to the "is this conformance resilient?" query that takes
into account such conformances.
Fixes rdar://136586922.
The main change here is to associate a witness table with a `ProtocolConformance` instead of a `RootProtocolConformance`.
A `ProtocolConformance` is the base class and can be a `RootProtocolConformance` or a `SpecializedProtocolConformance`.
For types like `Atomic` and `Mutex`, we want to know that even though they are
technically bitwise-takable, they differ from other bitwise-takable types until
this point because they are not also "bitwise-borrowable"; while borrowed,
they are pinned in memory, so they cannot be passed by value as a borrowed
parameter, unlike copyable bitwise-takable types. Add a bit to the value witness
table flags to record this.
Note that this patch does not include any accompanying runtime support for
propagating the flag into runtime-instantiated type metadata. There isn't yet
any runtime functionality that varies based on this flag, so that can
be implemented separately.
rdar://136396806
The generality of the `AvailabilityContext` name made it seem like it
encapsulates more than it does. Really it just augments `VersionRange` with
additional set algebra operations that are useful for availability
computations. The `AvailabilityContext` name should be reserved for something
pulls together more than just a single version.
Typed pointers are slowly being removed. There's a lot more cleanup to
do here, since really all `IRGenModule::.*PtrTy` should just be `PtrTy`,
but this at least gets us compiling for now.
We add the `memory(argmem: readwrite)` attribute to swift_task_create,
which means that the call is only allowed to read or write "pointer
operands". LLVM is smart enough to look through obvious ptrtoint
casts, but not to look through integer selects and so on, which is what
we produce when there's an opaque optional operand that feeds into the
builtin. This was causing miscompiles under optimization when using
`@isolated(any)` function types for task creation, since we're not yet
clever enough to fold the function_extract_isolation for a known function
(and of course it's not necessarily a known function anyway).
Distributed protocol requirements don't have associated SILFunction,
let's introduce a more flexible way to define it that collects only
the information necessary for the function to become accessible.
Given the following protocol:
```
protocol Greeter : DistributedActor {
distributed func greet()
}
```
The changes make it possible to synthesize a distributed accessor
thunk for the requirement `greet` which would be dispatched to the
underlying concrete actor implementation at runtime.
Fix a bug in expandExternalSignatureTypes where it wasn't annotating a function call parameter type with sret when the result was being returned indirectly.
The bug was causing calls to ObjC methods that return their results indirectly to crash.
Additionally, fix the return type for C++ constructors computed in expandExternalSignatureTypes. Previously, the return type was always void even on targets that require constructors to return this (e.g., Apple arm64), which was causing C++ constructor thunks to be emitted needlessly.
Resolves rdar://121618707
Given a releasable value which contains a noncopyable value type with a
deinit, that values outlined release function, among other things, must
call the deinit of that noncopyable value type. In order to do that,
its type metadata must be passed to the value function if it has an
archetype.
Add a `-min-runtime-version` option that can be used to avoid problems
when building on Linux and Windows where because the runtime isn't
part of the OS, availability doesn't solve the problem of trying to
build the compiler against an older runtime.
Also add functions to IRGen to make it easy to test feature
availability using both the runtime version and the existing Darwin
availability support.
rdar://121522431
In preparation for future patches where debug info generation will need
to access the special builtin types, lazily emit them into a separate
lazily initialized vector.
When an actual instance of a distributed actor is on the local node, it is
has the capabilities of `Actor`. This isn't expressible directly in the type
system, because not all `DistributedActor`s are `Actor`s, nor is the
opposite true.
Instead, provide an API `DistributedActor.asLocalActor` that can only
be executed when the distributed actor is known to be local (because
this API is not itself `distributed`), and produces an existential
`any Actor` referencing that actor. The resulting existential value
carries with it a special witness table that adapts any type
conforming to the DistributedActor protocol into a type that conforms
to the Actor protocol. It is "as if" one had written something like this:
extension DistributedActor: Actor { }
which, of course, is not permitted in the language. Nonetheless, we
lovingly craft such a witness table:
* The "type" being extended is represented as an extension context,
rather than as a type context. This hasn't been done before, all Swift
runtimes support it uniformly.
* A special witness is provided in the Distributed library to implement
the `Actor.unownedExecutor` operation. This witness back-deploys to the
Swift version were distributed actors were introduced (5.7). On Swift
5.9 runtimes (and newer), it will use
`DistributedActor.unownedExecutor` to support custom executors.
* The conformance of `Self: DistributedActor` is represented as a
conditional requirement, which gets satisfied by the witness table
that makes the type a `DistributedActor`. This makes the special
witness work.
* The witness table is *not* visible via any of the normal runtime
lookup tables, because doing so would allow any
`DistributedActor`-conforming type to conform to `Actor`, which would
break the safety model.
* The witness table is emitted on demand in any client that needs it.
In back-deployment configurations, there may be several witness tables
for the same concrete distributed actor conforming to `Actor`.
However, this duplication can only be observed under fairly extreme
circumstances (where one is opening the returned existential and
instantiating generic types with the distributed actor type as an
`Actor`, then performing dynamic type equivalence checks), and will
not be present with a new Swift runtime.
All of these tricks together mean that we need no runtime changes, and
`asLocalActor` back-deploys as far as distributed actors, allowing it's
use in `#isolation` and the async for...in loop.
Currently only arrays can be put into a read-only data section.
"Regular" classes have dynamically initialized metadata, which needs to be stored into the isa field at runtime.