Introduce availability macros defined by a frontend flag.
This feature makes it possible to set the availability
versions at the moment of compilation instead of having
it hard coded in the sources. It can be used by projects
with a need to change the availability depending on the
compilation context while using the same sources.
The availability macro is defined with the `-define-availability` flag:
swift MyLib.swift -define-availability "_iOS8Aligned:macOS 10.10, iOS 8.0" ..
The macro can be used in code instead of a platform name and version:
@available(_iOS8Aligned, *)
public func foo() {}
rdar://problem/65612624
We'll need this to get the right 'selfDC' when name lookup
finds a 'self' declaration in a capture list, eg
class C {
func bar() {}
func foo() {
_ = { [self] in bar() }
}
}
For example, the completion below would trigger error recovery within the
closure, which we recover from by skipping to the first inner closure's right
brace. The fact that we recovered though, was not recorded. The closure is
treated as still being an error, triggering another recovery after it that
skips over the 'Thing' token, giving a lone closure expression, rather than a
call.
CreateThings {
Thing { point in
print("hello")
point.#^HERE^#
}
Thing { _ in }
}
This isn't an issue for code completion when the outer closure is a regular
closure, but when it's a function builder, invalid elements result in no types
being applied (no valid solutions) and we end up with no completion results.
The fix here is removing the error status from the parser result after the
initial parser recovery.
Similar to `try`, await expressions have no specific semantics of their
own except to indicate that the subexpression contains calls to `async`
functions, which are suspension points. In this design, there can be
multiple such calls within the subexpression of a given `await`.
Note that we currently use the keyword `__await` because `await` in
this position introduces grammatical ambiguities. We'll wait until
later to sort out the specific grammar we want and evaluate
source-compatibility tradeoffs. It's possible that this kind of prefix
operator isn't what we want anyway.
Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
VarPattern is today used to implement both 'let' and 'var' pattern bindings, so
today is already misleading. The reason why the name Var was chosen was done b/c
it is meant to represent a pattern that performs 'variable binding'. Given that
I am going to add a new 'inout' pattern binding to this, it makes sense to
give it now a better fitting name before I make things more confusing.
This affects module interfaces, interface generation in sourcekitd, and
diagnostics. Also fixes a fixit that was assuming the 'OSX' spelling when
computing the source range to replace.
Resolves rdar://problem/64667960
For example for:
funcName(base.<HERE>)
Wrap 'base' with 'CodeCompletionExpr' so that type checker can check
'base' independently without preventing the overload choice of 'funcName'.
This increases the chance of successful type checking.
rdar://problem/63965160
The parser used to rewrite
if let x: T
into
if let x: T?
This transformation is correct at face value, but relied on being able
to construct TypeReprs with bogus source locations. Instead of having
the parser kick semantic analysis into shape, let's perform this
reinterpretation when we resolve if-let patterns in statement
conditions.
that allows arbitrary `label: {}` suffixes after an initial
unlabeled closure.
Type-checking is not yet correct, as well as code-completion
and other kinds of tooling.
Accept trailing closures in following form:
```swift
foo {
<label-1>: { ... }
<label-2>: { ... }
...
<label-N>: { ... }
}
```
Consider each labeled block to be a regular argument to a call or subscript,
so the result of parser looks like this:
```swift
foo(<label-1>: { ... }, ..., <label-N>: { ... })
```
Note that in this example parens surrounding parameter list are implicit
and for the cases when they are given by the user e.g.
```swift
foo(bar) {
<label-1>: { ... }
...
}
```
location of `)` is changed to a location of `}` to make sure that call
"covers" all of the transformed arguments and parser result would look
like this:
```swift
foo(bar,
<label-1>: { ... }
)
```
Resolves: rdar://problem/59203764
Also extend returned object from simplify being an expression to
`TrailingClosure` which has a label, label's source location and
associated closure expression.
Like switch cases, a catch clause may now include a comma-
separated list of patterns. The body will be executed if any
one of those patterns is matched.
This patch replaces `CatchStmt` with `CaseStmt` as the children
of `DoCatchStmt` in the AST. This necessitates a number of changes
throughout the compiler, including:
- Parser & libsyntax support for the new syntax and AST structure
- Typechecking of multi-pattern catches, including those which
contain bindings.
- SILGen support
- Code completion updates
- Profiler updates
- Name lookup changes
This restructures the indentation logic around producing a single IndentContext
for the line being indented. An IndentContext has:
- a ContextLoc, which points to a source location to indent relative to,
- a Kind, indicating whether we should align with that location exactly, or
with the start of the content on its containing line, and
- an IndentLevel with the relative number of levels to indent by.
It also improves the handling of:
- chained and nested parens, braces, square brackets and angle brackets, and
how those interact with the exact alignment of parameters, call arguments,
and tuple, array and dictionary elements.
- Indenting to the correct level after an incomplete expression, statement or
decl.
Resolves:
rdar://problem/59135010
rdar://problem/25519439
rdar://problem/50137394
rdar://problem/48410444
rdar://problem/48643521
rdar://problem/42171947
rdar://problem/40130724
rdar://problem/41405163
rdar://problem/39367027
rdar://problem/36332430
rdar://problem/34464828
rdar://problem/33113738
rdar://problem/32314354
rdar://problem/30106520
rdar://problem/29773848
rdar://problem/27301544
rdar://problem/27776466
rdar://problem/27230819
rdar://problem/25490868
rdar://problem/23482354
rdar://problem/20193017
rdar://problem/47117735
rdar://problem/55950781
rdar://problem/55939440
rdar://problem/53247352
rdar://problem/54326612
rdar://problem/53131527
rdar://problem/48399673
rdar://problem/51361639
rdar://problem/58285950
rdar://problem/58286076
rdar://problem/53828204
rdar://problem/58286182
rdar://problem/58504167
rdar://problem/58286327
rdar://problem/53828026
rdar://problem/57623821
rdar://problem/56965360
rdar://problem/54470937
rdar://problem/55580761
rdar://problem/46928002
rdar://problem/35807378
rdar://problem/39397252
rdar://problem/26692035
rdar://problem/33760223
rdar://problem/48934744
rdar://problem/43315903
rdar://problem/24630624
Instead of interleaving typechecking and parsing
for SIL files, first parse the file for Swift
decls by skipping over any intermixed SIL decls.
Then we can perform type checking, and finally SIL
parsing where we now skip over Swift decls.
This is an intermediate step to requestifying the
parsing of a source file for its Swift decls.
SIL differentiability witnesses are a new top-level SIL construct mapping
"original" SIL functions to derivative SIL functions.
SIL differentiability witnesses have the following components:
- "Original" `SILFunction`.
- SIL linkage.
- Differentiability parameter indices (`IndexSubset`).
- Differentiability result indices (`IndexSubset`).
- Derivative `GenericSignature` representing differentiability generic
requirements (optional).
- JVP derivative `SILFunction` (optional).
- VJP derivative `SILFunction` (optional).
- "Is serialized?" bit.
This patch adds the `SILDifferentiabilityWitness` data structure, with
documentation, parsing, and printing.
Resolves TF-911.
Todos:
- TF-1136: upstream `SILDifferentiabilityWitness` serialization.
- TF-1137: upstream `SILDifferentiabilityWitness` verification.
- TF-1138: upstream `SILDifferentiabilityWitness` SILGen from
`@differentiable` and `@derivative` attributes.
- TF-20: robust mangling for `SILDifferentiabilityWitness` names.
Improve diagnostics for labeled block without 'do'.
Parse and diagnose { identifier ':' '{' } as a labeled 'do' statement.
https://bugs.swift.org/browse/SR-3867
Well, this does nothing. It just set the parser position twice and calls
the consumer's 'handleResults()' without any reason.
It seems it was intended to be a "fallback" completion, but it was never
implemented properly. So just remove it for now.
rdar://problem/58102910
- Rename code completion related names in 'PersistentParserState' so
it's clear when you are using.
- Refactor 'performCodeCompletionSecondPass()': Inline and consolidate
'parse*Delayed()' because they used to share many code.
rdar://problem/56926367
There were a few places discarding recorded syntax:
- '#<code-complete>' at top-level (this should be parsed as UnknownDecl).
- 'typealias' decl with inheritance clause in protocol decl.