The reason why I am doing this is that we are going to be enabling lexical
lifetimes early in the pipeline so that I can use it for the move operator's
diagnostics.
To make it easy for passes to know whether or not they should support lexical
lifetimes, I included a query on SILOptions called
supportsLexicalLifetimes. This will return true if the pass (given the passed in
option) should insert the lexical lifetime flag. This ensures that passes that
run in both pipelines (e.x.: AllocBoxToStack) know whether or not to set the
lexical lifetime flag without having to locally reason about it.
This is just chopping off layers of a larger patch I am upstreaming.
NOTE: This is technically NFC since it leaves the default alone of not inserting
lexical lifetimes at all.
NOTE: This is only available when the flag -enable-experimental-move-only. There
are no effects when the flag is disabled.
The way that this works is that it takes advantage of the following changes to
SILGen emission:
* When SILGen initializes a let with NoImplicitCopyAttribute, SILGen now emits
a begin_borrow [lexical] + copy + move_only. This is a pattern that we can check
and know that we are processing a move only value. When performing move
checking, we check move_only as a move only value and that it isn't consumed
multiple times.
* The first point works well for emitting all diagnostics except for
initializing an additional let var. To work around that I changed let
initialization to always bind to an owned value to a move of that owned
value. There is no semantic difference since that value is going to be consumed
by the binding operation anyways so we effectively just move the cleanup from
the original value we wanted to bind to the move. We still then actually borrow
the new let value with a begin_borrow [lexical] for the new let value. This
ensures that an initialization of a let value appears to be a consuming use to
the move only value checker while ensuring that the value has a proper
begin_borrow [lexical].
Some notes on functionality:
1. This attribute can only be applied to local 'let'.
2. "print" due to how we call it today with a vararg array is treated as a
consuming use (unfortunately).
3. I have not added the builtin copy operator yet, but I recently added a _move
skeleton attribute so one can end the lifetimes of these values early.
4. This supports all types that are not address only types (similar to
_move). To support full on address only types we need opaque values.
rdar://83957088
Previously, the flag was a LangOptioins. That didn't make much sense because
this isn't really a user-facing behavior. More importantly, as a member
of that type type it couldn't be accessed when setting up pass
pipelines. Here, the flag is moved to SILOptions.
Previsouly we were evaluating a tuple elt and then performing the relevant
sub-initialization. The problem is that a sub-initialization can invoke code
that could perform an early exit cleanup. So any later tuple-elements that may
need to be cleaned up along such path will not have had their cleanups
initialized, resulting in a leak along such paths.
With this commit, we instead evaluate all of the tuple elements and only them
perform the sub-initialization ensuring that any early exits clean up all of the
tuple elements.
rdar://83770295
This reverts commit be922b9990.
By adding some extra scopes here we are triggering some broken behavior in a
bunch of projects. I am going to see if I can do another fix for this. That
being said in the short term, we are reverting to unblock those projects.
rdar://83770295
Changed the frontend flag to -enable-experimental-lexical-lifetimes from
-enable-experimental-defined-lifetimes.
Changed the attribute on begin_borrow from [defined] to [lexical].
Previously, we would leak in this case along the inner failure path since we had
already forwarded the outer cleanup. Instead in this patch, I change the outer
cleanup to be persistently active (ensuring that failure paths along the
sub-pattern are cleaned up appropriately) and forward it manually afterwards
ensuring that we do not /actually/ emit the cleanup along the success path.
rdar://81817725
Change the code generation patterns for `async let` bindings to use an ABI based on the following
functions:
- `swift_asyncLet_begin`, which starts an `async let` child task, but which additionally
now associates the `async let` with a caller-owned buffer to receive the result of the task.
This is intended to allow the task to emplace its result in caller-owned memory, allowing the
child task to be deallocated after completion without invalidating the result buffer.
- `swift_asyncLet_get[_throwing]`, which replaces `swift_asyncLet_wait[_throwing]`. Instead of
returning a copy of the value, this entry point concerns itself with populating the local buffer.
If the buffer hasn't been populated, then it awaits completion of the task and emplaces the
result in the buffer; otherwise, it simply returns. The caller can then read the result out of
its owned memory. These entry points are intended to be used before every read from the
`async let` binding, after which point the local buffer is guaranteed to contain an initialized
value.
- `swift_asyncLet_finish`, which replaces `swift_asyncLet_end`. Unlike `_end`, this variant
is async and will suspend the parent task after cancelling the child to ensure it finishes
before cleaning up. The local buffer will also be deinitialized if necessary. This is intended
to be used on exit from an `async let` scope, to handle cleaning up the local buffer if necessary
as well as cancelling, awaiting, and deallocating the child task.
- `swift_asyncLet_consume[_throwing]`, which combines `get` and `finish`. This will await completion
of the task, leaving the result value in the result buffer (or propagating the error, if it
throws), while destroying and deallocating the child task. This is intended as an optimization
for reading `async let` variables that are read exactly once by their parent task.
To avoid an epoch break with existing swiftinterfaces and ABI clients, the old builtins and entry
points are kept intact for now, but SILGen now only generates code using the new interface.
This new interface fixes several issues with the old async let codegen, including use-after-free
crashes if the `async let` was never awaited, and the inability to read from an `async let` variable
more than once.
rdar://77855176
introduce new options parameter to all task spawning
[Concurrency] ABI for asynclet start to accept options
[Concurrency] fix unittest usages of changed task creation ABI
[Concurrency] introduce constants for parameter indexes in ownership
[Concurrency] fix test/SILOptimizer/closure_lifetime_fixup_concurrency.swift
In the following code, SILGen emits a mark_uninitialized instruction
on the projected box value, diagnosing the reference to 'x' before
it has been fully initialized:
var x: Int
x = { _ = x; 123 }()
However, when the binding has an initial value, we don't emit the
mark_uninitialized instruction, and the closure ends up capturing the
uninitialized box:
var x: Int = { _ = x; 123 }() // undefined behavior
Unfortunately, we can't unconditionally emit a mark_uninitialized here,
because DI does not recognize all the code patterns that SILGen can emit
when initializing an address-only value in-place.
Instead, what we want to do is only enter the box into SILGenFunction::VarLocs
after the initial value expression has been emitted. This ensures that the
forward-referenced-capture diagnostics catch this.
Note that this only addresses the case of a local binding; we still
generate invalid code here if you forward-reference a global 'var' in
this manner. Fixing that requires some additional changes.
Fixes https://bugs.swift.org/browse/SR-14747, rdar://problem/77933460.
Implement SIL generation for "async let" constructs, which involves:
1. Creating a child task future at the point of declaration of the "async let",
which runs the initializer in an async closure.
2. Entering a cleanup to destroy the child task.
3. Entering a cleanup to cancel the child task.
4. Waiting for the child task when any of the variables is reference.
5. Decomposing the result of the child task to write the results into the
appropriate variables.
Implements rdar://71123479.
Rather than produce an "unowned" result from `getCurrentAsyncTask()`,
take advantage of the fact that the task is effectively guaranteed in
the scope. Do so be returning it as "unowned", and push an
end_lifetime cleanup to end the lifetime. This eliminates unnecessary
ref-count traffic as well as introducing another use of unowned.
Approach is thanks to Michael Gottesman, bugs are mine.
This has been a long standing issue that we have been hacking around in various
points in SILGen. Now CleanupCloner just does the right thing.
I was unable to cause any issues to pop up in tree (since I believe we hacked
around this and converged on correctness). But it does come up in combination
with new code in https://github.com/apple/swift/pull/31779.
rdar://63514765
VarPattern is today used to implement both 'let' and 'var' pattern bindings, so
today is already misleading. The reason why the name Var was chosen was done b/c
it is meant to represent a pattern that performs 'variable binding'. Given that
I am going to add a new 'inout' pattern binding to this, it makes sense to
give it now a better fitting name before I make things more confusing.
* [SILGenFunction] Don't create redundant nested debug scopes
Instead of emitting:
```
sil_scope 4 { loc "main.swift":6:19 parent 3 }
sil_scope 5 { loc "main.swift":7:3 parent 4 }
sil_scope 6 { loc "main.swift":7:3 parent 5 }
sil_scope 7 { loc "main.swift":7:3 parent 5 }
sil_scope 8 { loc "main.swift":9:5 parent 4 }
```
Emit:
```
sil_scope 4 { loc "main.swift":6:19 parent 3 }
sil_scope 5 { loc "main.swift":7:3 parent 4 }
sil_scope 6 { loc "main.swift":9:5 parent 5 }
```
* [IRGenSIL] Diagnose conflicting shadow copies
If we attempt to store a value with the wrong type into a slot reserved
for a shadow copy, diagnose what went wrong.
* [SILGenPattern] Defer debug description of case variables
Create unique nested debug scopes for a switch, each of its case labels,
and each of its case bodies. This looks like:
```
switch ... { // Enter scope 1.
case ... : // Enter scope 2, nested within scope 1.
<body-1> // Enter scope 3, nested within scope 2.
case ... : // Enter scope 4, nested within scope 1.
<body-2> // Enter scope 5, nested within scope 4.
}
```
Use the new scope structure to defer emitting debug descriptions of case
bindings. Specifically, defer the work until we can nest the scope for a
case body under the scope for a pattern match.
This fixes SR-7973, a problem where it was impossible to inspect a case
binding in lldb when stopped at a case with multiple items.
Previously, we would emit the debug descriptions too early (in the
pattern match), leading to duplicate/conflicting descriptions. The only
reason that the ambiguous description was allowed to compile was because
the debug scopes were nested incorrectly.
rdar://41048339
* Update tests
Switch most callers to explicit indices. The exceptions lie in things that needs to manipulate the parsed output directly including the Parser and components of the ASTScope. These are included as friend class exceptions.
This removes an intricate set of invariants that must be kept consistent
between Parse and SILGen. It will also make it easier to implement local
variables with 'lazy' and property wrappers in the future.
Just as with conformances, we can detect that a delayed function
needs to be added to the queue from 'first principles' rather than
walking the ExternalDefinitions list.
This completely eliminates the ExternalDefinitions walk from SILGen,
which has several advantages:
- It fixes a source of quadratic behavior. In batch mode, type checking
produces a list of external definitions shared across all primary
files. Then, SILGen runs once per primary file, building a delayed
emission map every time.
- It allows SILGen to emit external definitions which only come into
existence as a result of lazy conformance checking. Previously,
anything that was added after SILGen performed its walk over the
external definitions list would not be emitted.
Instead of visiting all types in the ExternalDefinitions list and
queuing up their conformances, just emit conformances as needed
when they are first referenced.
ManagedValue::{forward,assign}Into both have the signature SILGenFunction &,
SILLocation, SILValue. For some reason copyInto has SILLocation and SILValue
swapped. This commit standardizes copyInto to match the others.
These can be recreated if needed in a client library. To do this, I've
added a new ConformanceLookupKind::NonInherited, which can also be
used elsewhere in the project where we're already filtering out
inherited conformances some other way.
Note that this doesn't drop inherited conformances from the entire
serialized interface, just from the list that a class explicitly
declares. They still get referenced sometimes.
rdar://problem/50541451 and possibly others
This is a large patch; I couldn't split it up further while still
keeping things working. There are four things being changed at
once here:
- Places that call SILType::isAddressOnly()/isLoadable() now call
the SILFunction overload and not the SILModule one.
- SILFunction's overloads of getTypeLowering() and getLoweredType()
now pass the function's resilience expansion down, instead of
hardcoding ResilienceExpansion::Minimal.
- Various other places with '// FIXME: Expansion' now use a better
resilience expansion.
- A few tests were updated to reflect SILGen's improved code
generation, and some new tests are added to cover more code paths
that previously were uncovered and only manifested themselves as
standard library build failures while I was working on this change.
Currently Sema completes all _ObjectiveCBridgeable conformances it thinks
are needed in SILGen and runtime dynamic casts, but that's about to change.
When emitting conformances for an imported type we would skip incomplete
conformances. Now that we have a long-lived type checker instance, there
is no longer any reason to do that. Looking up witnesses from an
incomplete conformance will trigger conformance checking as needed.
Furthermore, conformances emitted in this path are emitted lazily, so if
a conformance is not used, no conformance checking will take place.
A change in behavior only occurs after subsequent changes to remove Sema's
eager checking of ClangImporter-synthesized _ObjectiveCBridgeable
conformances; at that point, we must be prepared to lazily emit these
incomplete conformances.