Canonicalizes `differentiable_function` instructions by filling in missing
derivative function operands.
Derivative function emission rules, based on the original function value:
- `function_ref`: look up differentiability witness with the exact or a minimal
superset derivative configuration. Emit a `differentiability_witness_function`
for the derivative function.
- `witness_method`: emit a `witness_method` with the minimal superset derivative
configuration for the derivative function.
- `class_method`: emit a `class_method` with the minimal superset derivative
configuration for the derivative function.
If an *actual* emitted derivative function has a superset derivative
configuration versus the *desired* derivative configuration, create a "subset
parameters thunk" to thunk the actual derivative to the desired type.
For `differentiable_function` instructions formed from curry thunk applications:
clone the curry thunk (with type `(Self) -> (T, ...) -> U`) and create a new
version with type `(Self) -> @differentiable (T, ...) -> U`.
Progress towards TF-1211.
Add `linear_function` and `linear_function_extract` instructions.
`linear_function` creates a `@differentiable(linear)` function-typed value from
an original function operand and a transpose function operand (optional).
`linear_function_extract` extracts either the original or transpose function
value from a `@differentiable(linear)` function.
Resolves TF-1142 and TF-1143.
Add `differentiable_function` and `differentiable_function_extract`
instructions.
`differentiable_function` creates a `@differentiable` function-typed
value from an original function operand and derivative function operands
(optional).
`differentiable_function_extract` extracts either the original or
derivative function value from a `@differentiable` function.
The differentiation transform canonicalizes `differentiable_function`
instructions, filling in derivative function operands if missing.
Resolves TF-1139 and TF-1140.
Otherwise in call frames like the one in the test in this commit get unneeded
ARC traffic. We should never pessimize read only code that doesnt need
side-effects with side-effects if we can avoid it.
I am seeing this a bunch when I look at SIL from projects that use a lot of
protocols. Specifically, one has a sort of trampoline code that wraps a ref
counted object in an existential ref container (which from an ARC perspective
doesn't imply ownership) and then calls a method on it or passes it off to some
other code.
Because of this requirement, there is a copy/destroy that can not be eliminated
unless we can devirt/inline/eliminate the init_existential_ref box, inline
enough that the low level ARC optimizer can hit it. We shouldn't rely on such
properties if we do not need to.
Operands are generally better to return than values since the operand also
enables you to get to the terminator instruction as well. Since so much code in
the compiler already uses the getIncomingPhiValue methods, I reimplemented them
on top of the operand methods.
Found the meaning by looking at when Definite Initialization marks alloc_stack
with that marker.
For those who are unware like me, it means the liveness of the value in the
alloc_stack is conditional in some way (i.e. conditional init, destroy, etc).
The only reason why BranchPropagatedUser existed was because early on in SIL, we
weren't sure if cond_br should be able to handle non-trivial values in
ossa. Now, we have reached the point where we have enough experience to make the
judgement that it is not worth having in the representation due to it not
holding its weight.
Now that in ToT we have banned cond_br from having non-trivial operands in ossa,
I can just eliminate BranchPropagatedUser and replace it with the operands that
we used to construct them!
A few notes:
1. Part of my motiviation in doing this is that I want to change LiveRange to
store operands instead of instructions. This is because we are interested in
being able to understand the LiveRange at a use granularity in cases where we
have multiple operands. While doing this, I discovered that I needed
SILInstructions to use the Linear Lifetime Checker. Then I realized that now was
the time to just unwind BranchPropagatedUser.
2. In certain places in SemanticARCOpts, I had to do add some extra copies to
transform arrays of instructions from LiveRange into their operand form. I am
going to remove them in a subsequent commit when I change LiveRange to work on
operands. I am doing this split to be incremental.
3. I changed isSingleInitAllocStack to have an out array of Operand *. The only
user of this code is today in SemanticARCOpts and this information is fed to the
Linear Lifetime Checker, so I needed to do it.
We can eliminate `convert_function`s that are immediately used as the callee of
an `apply` or `partial_apply`, as well as stacked `convert_function`s that may
arise from this transformation.
The `differentiability_witness_function` instruction looks up a
differentiability witness function (JVP, VJP, or transpose) for a referenced
function via SIL differentiability witnesses.
Add round-trip parsing/serialization and IRGen tests.
Notes:
- Differentiability witnesses for linear functions require more support.
`differentiability_witness_function [transpose]` instructions do not yet
have IRGen.
- Nothing currently generates `differentiability_witness_function` instructions.
The differentiation transform does, but it hasn't been upstreamed yet.
Resolves TF-1141.
For those who are unaware, a transformation terminator is a terminator like
switch_enum/checked_cast_br that always dominate their successor blocks. Since
they dominate their successor blocks by design and transform their input into
the args form, we can validate that they obey guaranteed ownership semantics
just like a forwarding instruction.
Beyond removing unnecessary code bloat, this also makes it significantly more
easier to optimize/work with transformation terminators when converting @owned
-> @guaranteed since we do not need to find end_borrow points when the owned
value is consumed.
<rdar://problem/59097063>
This method returns argument lists, not arguments! We should add in the future
an additional API that returns a flap mapped range over all such argument lists
to cleanup some of this code. But at least now the name is more accurate.
The `SILSuccessor` type does not permit copy or move initialization.
Direct initialization is required, however, GCC7 seems unable to cope
with the direct initialization of the array of non-copyable UDTs. Use a
`std::array` which can be direct-initialized. This enables building
with GCC7.
VS2015 had an issue with the deletion of an operator. Since VS2017 is
the minimum version that LLVM uses, we can assume that VS2017+ is in use
(_MSC_VER >= 1910). Clean up the now defunct workaround.
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
Fixes a potential real bug in the case that SinkAddressProjections moves
projections without notifying SimplifyCFG of the change. This could
fail to update Analyses (probably won't break anything in practice).
Introduce SILInstruction::isPure. Among other things, this can tell
you if it's safe to duplicate instructions at their
uses. SinkAddressProjections should check this before sinking uses. I
couldn't find a way to expose this as a real bug, but it is a
theoretical bug.
Add the SinkAddressProjections functionality to the BasicBlockCloner
utility. Enable address projection sinking for all BasicBlockCloner
clients (the four different kinds of jump-threading that use it). This
brings the compiler much closer to banning all address phis.
The "bugs" were originally introduced a week ago here:
commit f22371bf0b (fork/fix-address-phi, fix-address-phi)
Author: Andrew Trick <atrick@apple.com>
Date: Tue Sep 17 16:45:51 2019
Add SIL SinkAddressProjections utility to avoid address phis.
Enable this utility during jump-threading in SimplifyCFG.
Ultimately, the SIL verifier should prevent all address-phis and we'll
need to use this utility in a few more places.
Fixes <rdar://problem/55320867> SIL verification failed: Unknown
formal access pattern: storage
I found this to be really useful outside of the inliner since this is exactly
what I needed to ensure that borrowed values used by a begin_apply, have the
end_apply/abort_apply as uses. I am adding that in a forthcoming commit.
NFC.
We have already been forwarding ownership in terms of ValueOwnership and
OwnershipUtils, I just had not setup certain parts of the ownership utils to
recognize mark_dependence as forwarding of guaranteed values. We did not hit
this before since we have not had been late enough in the pipeline to get
mark_dependence on guaranteed values.
In the future, we want to move to mark_dependence only taking guaranteed
values. This is a first step in that direction that at the same time allows me
to enable ownership lowering after diagnostics sooner since fixing the bigger
issue would be a relatively medium sized project.
https://forums.swift.org/t/improving-the-representation-of-polymorphic-interfaces-in-sil-with-substituted-function-types/29711
This prepares SIL to be able to more accurately preserve the calling convention of
polymorphic generic interfaces by letting the type system represent "substituted function types".
We add a couple of fields to SILFunctionType to support this:
- A substitution map, accessed by `getSubstitutions()`, which maps the generic signature
of the function to its concrete implementation. This will allow, for instance, a protocol
witness for a requirement of type `<Self: P> (Self, ...) -> ...` for a concrete conforming
type `Foo` to express its type as `<Self: P> (Self, ...) -> ... for <Foo>`, preserving the relation
to the protocol interface without relying on the pile of hacks that is the `witness_method`
protocol.
- A bool for whether the generic signature of the function is "implied" by the substitutions.
If true, the generic signature isn't really part of the calling convention of the function.
This will allow closure types to distinguish a closure being passed to a generic function, like
`<T, U> in (*T, *U) -> T for <Int, String>`, from the concrete type `(*Int, *String) -> Int`,
which will make it easier for us to differentiate the representation of those as types, for
instance by giving them different pointer authentication discriminators to harden arm64e
code.
This patch is currently NFC, it just introduces the new APIs and takes a first pass at updating
code to use them. Much more work will need to be done once we start exercising these new
fields.
This does bifurcate some existing APIs:
- SILFunctionType now has two accessors to get its generic signature.
`getSubstGenericSignature` gets the generic signature that is used to apply its
substitution map, if any. `getInvocationGenericSignature` gets the generic signature
used to invoke the function at apply sites. These differ if the generic signature is
implied.
- SILParameterInfo and SILResultInfo values carry the unsubstituted types of the parameters
and results of the function. They now have two APIs to get that type. `getInterfaceType`
returns the unsubstituted type of the generic interface, and
`getArgumentType`/`getReturnValueType` produce the substituted type that is used at
apply sites.
While tightening the requirements of the debug info generator in
IRGenSIL I noticed that SILCloner didn't correctly transfer variable
debug info on alloc_box and alloc_stack instructions. In order to make
these mistakes easier to find I added an assertion to SILBuilder and
fixed all issues uncovered by that assertion, too.
The result is a moderate increase in debug info coverage in optimized code.
On stdlib/public/core/OSX/x86_64/Swift.o "variables with location"
increases from 60134 to 60299.
I am doing some refactoring on BranchPropagatedUser that is requiring me to work
a lot more with arguments and I found a need for this to avoid trafficing in
operand indices.
As part of this I also needed to write the helper getConditionOperand() to get
the underlying operand. I refactored the already preset getCondition() to use
this helper instead since it was just semantically that method + get operand's
value.
I need this for some refactorings I am doing around BranchPropagatedUser.
We already had ApplySite::getCallee() which just returned the value of the
operand. I refactored it to call this instead.
Specifically, this transforms:
builtin "generic_add"<Builtin.Vec4xInt32>(
->
builtin "add_Vec4xInt32"(
If we do not have a static overload for the type, we just leave the generic call
alone. If the generic builtin takes addresses as its arguments (i.e. 2x
in_guaranteed + 1x out), we load the arguments, evaluate the static overloaded
builtin and then store the result into the out parameter.