To mark when a user of it is known to escape the value. This happens
with materializeForSet arguments which are captured and used in the
write-back. This means we need to keep the context alive until after
the write-back.
Follow-up patches to fully replace the PostponedCleanup hack in SILGen
by a mandatory SIL transformation pass to guarantee the proper lifetime
will use this flag to be more conservative when extending the lifetime.
The problem:
%pa = partial_apply %f(%some_context)
%cvt = convert_escape_to_noescape [not_guaranteed] [escaped] %pa
%ptr = %materialize_for_set(..., %cvt)
... write_back
... // <-- %pa needs to be alive until after write_back
This is a property of an instruction and should be a member
function of `SILInstruction` and not a free function in
`DebugUtils`. Discussed with Adrian.
This statically guarantees that the access has no inner conflict within
its own scope.
IRGen will turn this into a "nontracking" access in which an
exclusivity check is performed for conflicts on an outer scope. However,
unlike normal accesses the runtime does not record the access, and the
access will not be checked for subsequent conflicts.
end_unpaired_access [no_nested_conflict] is not currently
supported. Making a begin_unpaired_access [no_nested_conflict] requires
deleting the corresponding end_unpaired_access. Future runtimes
could support this for verification by storing inline data in the
valud buffer. However, the runtime can never assume that a
[no_nested_conflict] begin_unpaired_access will have a corresponding
end_unpaired_access call without adding a new ExclusivityFlag for
that purpose.
A public subscript might have generic indexes that aren't unconditionally Hashable, or might use indexes that are retroactively made Hashable, so the property descriptor on the implementer's side can't always resiliently provide this information to the final instantiated KeyPath.
If a property or subscript is referenceable from other modules, we need to give it a descriptor so that we can reliably build an equivalent key path in or out of that module.
There are some cases that we should handle but don't yet:
- Global and static properties ought to be key-path-able someday, so we should make descriptors for them, but this might need a new key path component kind.
- Subscripts with indexes that aren't Hashable in the current module ought to get descriptors too, in case we ever support non-hashable key path components, and also because a generic subscript might be substituted with Hashable types by an external user, or an external module might post-hoc extend a type to be Hashable, so we really need to change things so that the client supplies the hashing and equality implementations for the indexes instead of the descriptor.
Will be used to verify that withoutActuallyEscaping's block does not
escape the closure.
``%escaping = is_escaping_closure %closure`` tests the reference count. If the
closure is not uniquely referenced it prints out and error message and
returns true. Otherwise, it returns false. The returned result can be
used with a ``cond_fail %escaping`` instruction to abort the program.
rdar://35525730
This patch both makes debug variable information it optional on
alloc_stack and alloc_box instructions, and forced variable
information on debug_value and debug_value_addr instructions. The
change of the interface uncovered a plethora of bugs in SILGen,
SILTransform, and IRGen's LoadableByAddress pass.
Most importantly this fixes the previously commented part of the
DebugInfo/local-vars.swift.gyb testcase.
rdar://problem/37720555
This will allow key paths to resiliently reference public properties from other binaries by referencing a descriptor vended by the originating binary. NFC yet, this just provides printing/parsing/verification of the new component.
- @noescape functions are trivial types
That makes @noescape functions incompatible with escaping functions.
- Forward ownership of mark_dependence %3 : callee_guaranteed () -> () on %0 : noescape @callee_guaranteed () -> ()
- SIL: Add ABIEscapeToNoEscapeConversion to SILFunctionType::ABICompatibilityCheckResult
- SIL: A thin_to_thick_function with a @noescape result type has trivial ownership
- SIL: thin_to_thick_function can create noescape function types
Part of:
SR-5441
rdar://36116691
@noescape function types will eventually be trivial. A
convert_escape_to_noescape instruction does not take ownership of its
operand. It is a projection to the trivial value carried by the closure
-- both context and implementation function viewed as a trivial value.
A safe SIL program must ensure that the object that the project value is based
on is live beyond the last use of the trivial value. This will be
achieve by means of making the lifetimes dependent.
For example:
%e = partial_apply [callee_guaranteed] %f(%z) : $@convention(thin) (Builtin.Int64) -> ()
%n = convert_escape_to_noescape %e : $@callee_guaranteed () -> () to $@noescape @callee_guaranteed () -> ()
%n2 = mark_dependence %n : $@noescape @callee_guaranteed () -> () on %e : $@callee_guaranteed () -> ()
%f2 = function_ref @use : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %f2(%n2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
release_value %e : $@callee_guaranteed () -> ()
Note: This is not yet actually used.
Part of:
SR-5441
rdar://36116691
Use `unsigned` instead of `bool` for the member to make all members of
the structure the same. This fixes the behaviour of the structure on
Windows. The difference in the type caused the bitfields to be pushed
to the natural alignment of int resulting in the structure being padded
to 12-bytes instead of being packed into 4. Using `#pragma pack` also
did not make a difference here as the structure remained padded to
12-bytes.
* Reduce array abstraction on apple platforms dealing with literals
Part of the ongoing quest to reduce swift array literal abstraction
penalties: make the SIL optimizer able to eliminate bridging overhead
when dealing with array literals.
Introduce a new classify_bridge_object SIL instruction to handle the
logic of extracting platform specific bits from a Builtin.BridgeObject
value that indicate whether it contains a ObjC tagged pointer object,
or a normal ObjC object. This allows the SIL optimizer to eliminate
these, which allows constant folding a ton of code. On the example
added to test/SILOptimizer/static_arrays.swift, this results in 4x
less SIL code, and also leads to a lot more commonality between linux
and apple platform codegen when passing an array literal.
This also introduces a couple of SIL combines for patterns that occur
in the array literal passing case.
* Implement a few silcombine transformations for arrays
- Useless existential_ref <-> class conversions.
- mark_dependence_inst depending on uninteresting instructions.
- release(init_existential_ref(x)) -> release(x) when hasOneUse(x)
- Update COWArrayOpt to handle the new forms generated by this.
these aren't massive performance wins, but do shrink the size of SIL when
dealing with arrays.
* Generalize testcase to work on linux and on mac when checking stdlib is enabled.