When AnyHashable was added, SILGen gained support for lowering
AnyHashableErasureExpr, however we forgot to also add support
for AnyHashable parameter and result conversions to
FunctionConversionExpr.
Fixes <https://bugs.swift.org/browse/SR-2603>.
We don't want the machine calling conventions for closure invocation functions to necessarily be tied to the convention for normal thin functions or methods. NFC yet; for now, 'closure' follows the same behavior as the 'method' convention, but as part of partial_apply simplification it will be a requirement that partial_apply takes a @convention(closure) function and a box and produces a @convention(thick) function from them.
This eliminates a pile of now-dead code in:
* The type checker, where we no longer have special cases for bridging conversions
* The expression ASTs, where we no longer need to distinguish bridging collection up/down casts
* SILGen, which no longer uses
Still to come is the removal of the
_(set|dictionary)Bridge(From|To)ObjectiveC(Conditional)? entrypoints
from the standard library. They're still used by some tests.
If an ObjC API claims to return a nonnull object of a bridged type, such as blocks, then we're already screwed since we don't take that possibility into account when bridging to a Swift function. Attempting to peephole that case only generates broken code attempting to bitcast () -> () to Optional<() -> ()>, which is invalid due to the abstraction change between () -> () and Optional<T>. Fixes SR-2331.
Previously, if a generic type had a stored property with
a generic type and an initializer expression, we would
emit the expression directly in the body of each designated
initializer.
This is a problem if the designated initializer is defined
within an extension (even in the same source file), because
extensions have a different set of generic parameters and
archetypes.
Also, we've had bugs in the past where emitting an
expression multiple times didn't work properly. While these
might currently all be fixed, this is a tricky case to test
and it would be best to avoid it.
Fix both problems by emitting the initializer expression
inside its own function at the SIL level, and call the
initializer function from each designated initializer.
I'm using the existing 'variable initializer' mangling for this;
it doesn't seem to be used for anything else right now.
Currently, the default memberwise initializer does not use
this, because the machinery for emitting it is somewhat
duplicated and separate from the initializer expressions in
user-defined constructors. I'll clean this up in an upcoming
patch.
Fixes <https://bugs.swift.org/browse/SR-488>.
Synthesizing a VarDecl for #dsohandle causes some unwanted accessors to
be expected, but we really don't need them: this is a global variable
for the start of the image. There are only two uses of getDSOHandle:
getting the type and emitting the SIL for it. Rather than perform
acrobatics to turn off switches, just emit access directly where it's
needed.
rdar://problem/26565092
String literal expressions, as well as the magic literals #file and
tuple value that is then fed into one or two call expressions. For
string literals, that tuple value was implicitly splatted, breaking
AST invariants.
Instead, keep string literals and these magic literals that produce a
string as a single expression node, but store the declarations that
will be used to transform the raw literal into the complete
literal. SILGen will form the appropriate calls. This representation
is far simpler---the AST no longer has a bunch of implicit nodes---and
doesn't break AST invariants.
* [Type System] Handle raw pointer conversion.
As proposed in SE-0107: UnsafeRawPointer.
https://github.com/apple/swift-evolution/blob/master/proposals/0107-unsaferawpointer.md#implicit-argument-conversion
UnsafeMutablePointer<T> -> UnsafeMutableRawPointer
UnsafeMutablePointer<T> -> UnsafeRawPointer
UnsafePointer<T> -> UnsafeRawPointer
UnsafeMutableRawPointer -> UnsafeRawPointer
inout:
&anyVar -> UnsafeMutableRawPointer
&anyVar -> UnsafeRawPointer
array -> UnsafeRawPointer
string -> UnsafeRawPointer
varArray -> UnsafeMutableRawPointer
* Rename expectEqual(_, _, sameValue:) to expectEqualTest to workaround a type system bug.
<rdar://26058520> Generic type constraints incorrectly applied to functions with the same name
This is exposed by additions to the type system for UnsafeRawPointer.
Warning: unit tests fail very confusingly without this fix.
Strict aliasing only applies to memory operations that use strict
addresses. The optimizer needs to be aware of this flag. Uses of raw
addresses should not have their address substituted with a strict
address.
Also add Builtin.LoadRaw which will be used by raw pointer loads.
If a behavior has storage that can be initialized out-of-line, generate code in SILGen that uses stores to mark_uninitialized_behavior for eventual analysis by DI.
This is incomplete, particularly, it's missing code generation of glue thunks for accessors that require reabstraction, but I wanted to make sure the progress here didn't bitrot.
Being generic, the '_unwrapped' intrinsics force trafficking through memory, and while they're transparent so always get inlined, we don't do memory promotion in -Onone. Emitting the branch inline lets loadable optionals stay values leading to better -Onone codegen. (It also lets us throw away a surprising amount of support code for these optional intrinsics.)
We already have detailed knowledge of Optional's layout in SILGen, so these intrinsics were almost unused. They were only used in a few obscure places by some optional-to-bool conversions, used by 'is [A]' collection tests and the codegen for 'lazy' properties. Change these over to generate an EnumIsCaseExpr that we can directly lower to a 'select_enum' instruction in SILGen, leading to better codegen and obviating the need for these intrinsic functions.
emitLValue always has to occur in a writeback scope, even if the lvalue isn't formally accessed until later, because some lvalue productions immediately access their parent lvalue expression (namely optional chaining expressions). Fixes rdar://problem/26642478.
We now have enough machinery in place to reference local generic
functions which have captures, to get a value of function type
that can be passed around.
Generic local functions still cannot be directly called from
function call expressions, since those go down a different
path in SILGenApply.cpp -- the next patch will add support for
this case.
...in code that I wrote. The integrated REPL, deprecated though it may
be, does not have an associated DeclContext because its SourceFile is
not considered complete. (The proper LLDB REPL does not suffer from
this problem because they use a new SourceFile for every block of
input.)
Elsewhere, tighten up code that may have hit similar bugs, though we
haven't seen anything hit these yet.
rdar://problem/26476281
Implement the Objective-C #keyPath expression, which maps a sequence
of @objc property accesses to a key-path suitable for use with
Cocoa[Touch]. The implementation handles @objc properties of types
that are either @objc or can be bridged to Objective-C, including the
collections that work with key-value coding (Array/NSArray,
Dictionary/NSDictionary, Set/NSSet).
Still to come: code completion support and Fix-Its to migrate string
literal keypaths to #keyPath.
Implements the bulk of SR-1237 / rdar://problem/25710611.
Implements the core functionality of SE-0064 / SR-1239, which
introduces support for accessing the Objective-C selectors of the
getter and setter of an @objc property via #selector(getter:
propertyName) and #selector(setter: propertyName).
Introduce a bunch of QoI around mistakes using #selector to refer to a
property without the "getter:" or "setter:", using Fix-Its to help the
user get it right. There is more to do in this area, still, but we
have an end-to-end feature working.
Much of the implementation and nearly all of the test cases are from
Alex Hoppen (@ahoppen). I've done a bit of refactoring, simplified the
AST representation, and replaced Alex's custom
expression-to-declaration logic with an extension to the constraint
solver. The last bit might be short-lived, based on swift-evolution
PR280, which narrows the syntax of #selector considerably.
Joe asked me at the time if such a thing existed, and I had forgotten
about this one. This should be effectively NFC because any other type
should be filtered out by Sema.
- Now that *Pointer types are imported with nullability, there's the potential for non-object pointer APIs to lie about their nullability, so extend the hack to cover them.
- We would incorrectly consider a call like "struct.functionPointer()", where functionPointer is a property of block or function pointer type, to be able to lie about its return type nullability, even if the function pointer's own return type was a value type that isn't nullable. This would lead us to generate nonsense bitcast instructions from () to ()? that would get lowered to traps in IRGen. Fix this by checking for nullable types only on the types of expressions, where we have semantic information enough to understand what the types really mean, and only checking the Clang-ness of declarations. Fixes rdar://problem/23346344.
We would potentially emit a closure multiple times when converting
a closure to a @convention(c) type. This would result in a compiler
crash if a stored property of @convention(c) type had an initializer
expression and the containing type declaration had multiple
initializers.
Fixes <rdar://problem/25632886>.
Bridging thunks don't yet support bridging address-only types, but
ideally they should, so that we can bridge Objective-C types to
resilient value types.
This came up while I was adding @_fixed_layout declarations in
the standard library. To make this easier to figure out in the
future, add the asserts to the bridging logic for now.
Also, to avoid hitting the asserts when we emit a reference to a
C function with an incompatible type, don't emit the foreign
function at all until we determine that the ABI conversion is safe.
Introduce abstraction patterns for curried C-functions-as-methods for type lowering, and plumb the "foreign self parameter index" through call emission so that we emit the "self" parameter in the right position. This gets us handling C functions imported as methods with explicit swift_name attributes in simple, fully-applied cases. There's still more work to be done for properties, partial applications, and initializers introduced by extensions.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
There's a group of methods in `DeclContext` with names that start with *is*,
such as `isClassOrClassExtensionContext()`. These names suggests a boolean
return value, while the methods actually return a type declaration. This
patch replaces the *is* prefix with *getAs* to better reflect their interface.
_BridgedNSError conformances can affect the runtime behavior of
dynamic casts (e.g. 'is'). Unfortunately, the conformance is not
always emitted, in an effort to save space when not used. This change
forces the conformance witness tables to be emitted when we can detect
a dynamic cast to an _BridgedNSError conforming enum.
Test cases included, as well as a note about a potentially erroneous
path that is not currently handled: when the dynamic cast occurs in a
generic function to a generic type (and thus we are unsure which
conformances we need to pull in).