In some circumstances, a Swift declaration in module A will depend on
another declaration (usually from Objective-C) that can't be loaded,
for whatever reason. If the Swift declaration is *overriding* the
missing declaration, this can present a problem, because the way
methods are dispatched in Swift can depend on knowing the original
class that introduced the method. However, if the compiler can prove
that the override can still be safely invoked/used in all cases, it
doesn't need to worry about the overridden declaration being missing.
This is especially relevant for property accessors, because there's
currently no logic to recover from a property being successfully
deserialized and then finding out that an accessor couldn't be.
The decision of whether or not an override can be safely invoked
without knowledge of the base method is something to be cautious
about---a mistaken analysis would effectively be a miscompile. So up
until now, this was limited to one case: when a method is known to be
`@objc dynamic`, i.e. always dispatched through objc_msgSend. (Even
this may become questionable if we have first-class method references,
like we do for key paths.) This worked particularly well because the
compiler infers 'dynamic' for any overload of an imported Objective-C
method or accessor, in case it imports differently in a different
-swift-version and a client ends up subclassing it.
However...that inference does not apply if the class is final, because
then there are no subclasses to worry about.
This commit changes the test to be more careful: if the /missing/
declaration was `@objc dynamic`, we know that it can't affect ABI,
because either the override is properly `@objc dynamic` as well, or
the override has introduced its own calling ABI (in practice, a direct
call for final methods) that doesn't depend on the superclass. Again,
this isn't 100% correct in the presence of first-class methods, but it
does fix the issue in practice where a property accessor in a parent
class goes missing. And since Objective-C allows adding property
setters separately from the original property declaration, that's
something that can happen even under normal circumstances. Sadly.
This approach could probably be extended to constructors as well. I'm
a little more cautious about throwing vars and subscripts into the mix
because of the presence of key paths, which do allow identity-based
comparison of overrides and bases.
rdar://problem/56388950
Switch most callers to explicit indices. The exceptions lie in things that needs to manipulate the parsed output directly including the Parser and components of the ASTScope. These are included as friend class exceptions.
✔ More informative error messages in case of crashes.
✔ Handling and documenting different cases.
✔ Test cases for different cases.
✔ Make SDKDependencies.swift pass again.
We generate .swiftsourceinfo for stdlib in the build directory because ABI checker
could issue diagnostics to the stdlib source. However, this may also change other
diagnostic tests. Both Brent and Jordan have raised concern about this. After
adding this flag, other diagnostic tests could ignore .swiftsourceinfo files even
though when they are present so our tests will reflect what most users experience
when sources for stdlib are unavailable.
Since getSpecifier() now kicks off a request instead of always
returning what was previously set, we can't pass a ParamSpecifier
to the ParamDecl constructor anymore. Instead, callers either
call setSpecifier() if the ParamDecl is synthesized, or they
rely on the request, which can compute the specifier in three
specific cases:
- Ordinary parsed parameters get their specifier from the TypeRepr.
- The 'self' parameter's specifier is based on the self access kind.
- Accessor parameters are either the 'newValue' parameter of a
setter, or a cloned subscript parameter.
For closure parameters with inferred types, we still end up
calling setSpecifier() twice, once to set the initial defalut
value and a second time when applying the solution in the
case that we inferred an 'inout' specifier. In practice this
should not be a big problem because expression type checking
walks the AST in a pre-determined order anyway.
This directory should be excluded during installation since the content is only
used for local development. swiftsourceinfo file is currently emitted to this directory.
After this change, we only use one single hash table for USR to USR id
mapping. The basic source locations are an array of fixed length
records that could be retrieved by using the USR id since each
USR id is guaranteed to be associated with one basic location entry.
The source file paths are refactored to a blob of 0-terminated strings.
Decl locations use offset in this blob to refer to the source file path
where the decl was defined.
For .swiftdoc file, we don't expose doc-comments for underscored symbols. But this
seems to be an unnecessary constraint on .swiftsourceinfo file since we put
these symbols in .swiftinterface files anyway.
After setting up the .swiftsourceinfo file, this patch starts to actually serialize
and de-serialize source locations for declaration. The binary format of .swiftsourceinfo
currently contains these three records:
BasicDeclLocs: a hash table mapping from a USR ID to a list of basic source locations. The USR id
could be retrieved from the following DeclUSRs record using an actual decl USR. The basic source locations
include a file ID and the results from Decl::getLoc(), ValueDecl::getNameLoc(), Decl::getStartLoc() and Decl::getEndLoc().
The file ID could be used to retrieve the actual file name from the following SourceFilePaths record.
Each location is encoded as a line:column pair.
DeclUSRS: a hash table mapping from USR to a USR ID used by location records.
SourceFilePaths: a hash table mapping from a file ID to actual file name.
BasicDeclLocs should be sufficient for most diagnostic cases. If additional source locations
are needed, we could always add new source location records without breaking the backward compatibility.
When de-serializing the source location from a module-imported decl, we calculate its USR, retrieve the USR ID
from the DeclUSRS record, and use the USR ID to look up the basic location list in the BasicDeclLocs record.
For more details about .swiftsourceinfo file: https://forums.swift.org/t/proposal-emitting-source-information-file-during-compilation
When an EnumElementDecl is parsed, we create the parameter list before
creating the EnumElementDecl itself, so we have to re-parent those
ParamDecls just like we do for functions and subscripts.
Make getRawValueExpr() return a checked value.
This entails a strange kind of request that effectively acts like
a cache warmer. In order to properly check the raw value expression for
a single case, we actually need all the other cases for the
autoincrementing synthesis logic. The strategy is therefore to have the
request act at the level of the parent EnumDecl and check all the values
at once. We also cache at the level of the EnumDecl so the cache
"warms" for all enum elements simultaneously.
The request also abuses TypeResolutionStage to act as an indicator for
how much information to compute. In the minimal case, we will return
a complete accounting of (auto-incremented) raw values. In the maximal
case we will also check and record types and emit diagnostics. The
minimal case is uncached to support repeated evaluation.
Note that computing the interface type of an @objc enum decl *must*
force this request. The enum's raw values are part of the ABI, and we
should not get all the way to IRGen before discovering that we cannot
possibly lay out the enum. In the future, we might want to consider
moving this check earlier or have IRGen tolerate broken cases but for
now we will maintain the status quo and not have IRGen emit
diagnostics.