Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
Fixes rdar://55560962 and https://bugs.swift.org/browse/SR-11495
This bug was caused because we'd fail to lookup C in B, because we
hadn't computed its type yet and therefore B is filtered from lookup.
Just remove the filter for interface type.
This flag, currently staged in as `-experimental-skip-non-inlinable-function-bodies`, will cause the typechecker to skip typechecking bodies of functions that will not be serialized in the resulting `.swiftmodule`. This patch also includes a SIL verifier that ensures that we don’t accidentally include a body that we should have skipped.
There is still some work left to make sure the emitted .swiftmodule is exactly the same as what’s emitted without the flag, which is what’s causing the benchmark noise above. I’ll be committing follow-up patches to address those, but for now I’m going to land the implementation behind a flag.
Now that the generic signature is computable on demand, this predicate is doubly useless. All of the callers intended to ask "hasInterfaceType" anyways.
Like the last commit, SourceFile is used a lot by Parse and Sema, but
less so by the ClangImporter and (de)Serialization. Split it out to
cut down on recompilation times when something changes.
This commit does /not/ split the implementation of SourceFile out of
Module.cpp, which is where most of it lives. That might also be a
reasonable change, but the reason I was reluctant to is because a
number of SourceFile members correspond to the entry points in
ModuleDecl. Someone else can pick this up later if they decide it's a
good idea.
No functionality change.
Most of AST, Parse, and Sema deal with FileUnits regularly, but SIL
and IRGen certainly don't. Split FileUnit out into its own header to
cut down on recompilation times when something changes.
No functionality change.
Computing the interface type of a typealias used to push validation forward and recompute the interface type on the fly. This was fragile and inconsistent with the way interface types are computed in the rest of the decls. Separate these two notions, and plumb through explicit interface type computations with the same "computeType" idiom. This will better allow us to identify the places where we have to force an interface type computation.
Also remove access to the underlying type loc. It's now just a cache location the underlying type request will use. Push a type repr accessor to the places that need it, and push the underlying type accessor for everywhere else. Getting the structural type is still preferred for pre-validated computations.
This required the resetting of a number of places where we were - in many cases tacitly - asking the question "does the interface type exist". This enables the removal of validateDeclForNameLookup
Harden more of the serialization functions to propagate errors for
the caller to handle these errors gracefully. This fixes a crash in
finishNormalConformance when indexing a system module with an
implementation-only import.
rdar://problem/52837313
Removes duplicated logic from the implementations of
FileUnit::lookupValue, and simplifies the interface to
ModuleDecl::lookupValue, where everyone was passing an empty
(non-filtering) access path anyway /except/ during actual lookup from
source code. No functionality change.
The weak imported flag is now only set if the attribute is unconditionally
weak linked, which is the case when it or one of its parent contexts has a
@_weakLinked attribute.
To correctly handle weak linking based availability with serialized SIL
functions, we need to serialize the actual version tuple when the SIL function
was introduced. This is because the deployment target of the client app can
be older than the deployment target that the original module was built with.
Fixes <rdar://problem/52783668>.
This eliminates the entire 'lazy generic environment' concept;
essentially, all generic environments are now lazy, and since
each signature has exactly one environment, their construction
no longer needs to be co-ordinated with deserialization.
Now that GenericSignatures store their single unique GenericEnvironment,
we can remove similar logic from deserialization to preserve identity
of GenericEnvironments.
This memoizes the result, which is fine for all callers; the only
exception is open existential types where each new open existential
now explicitly gets a unique generic environment, allocated by
calling GenericEnvironment::getIncomplete().
Instead of computing it from the extended type after deserialization --
which is tricky to do, due to potential presence of protocol
compositions -- we obtain the extended nominal directly.
Fixes SR-11227 and linked rdar://problem/53712389.
...fulfilling the promised audit from 0747d9a339. No intended
functionality change /other/ than the order of already-unsorted lists.
This affected a number of SIL tests that relied on deserialization
order matching the original source order; I have no idea why the old
hash logic would make that the case. If we think that's a valuable
property, we should serialize a list of functions in addition to the
iterable table. (Maybe just in SIB mode?)
Unlike compiled modules, swiftdoc files are considered a stable
format, so we can't change how information is stored in them. If we
add any more string-hashed tables to swiftdoc files, we should
consider using a new hash seed for those.