The differentiation transform does the following:
- Canonicalizes differentiability witnesses by filling in missing derivative
function entries.
- Canonicalizes `differentiable_function` instructions by filling in missing
derivative function operands.
- If necessary, performs automatic differentiation: generating derivative
functions for original functions.
- When encountering non-differentiability code, produces a diagnostic and
errors out.
Partially resolves TF-1211: add the main canonicalization loop.
To incrementally stage changes, derivative functions are currently created
with empty bodies that fatal error with a nice message.
Derivative emitters will be upstreamed separately.
It's possible to get multiple threads reading from the same enum at the same time, and the result can be bad data extracted or even permanent corruption of the value in memory. Instead, copy the enum value, then project the data from the copy.
rdar://problem/59493486
Add concrete overloads for ~= for String/Substring
combinations. SR-12457 tracks making this generic after we understand
the expression type checker impact.
Previously, two conditions were necessary to enable differentiable programming:
- Using the `-enable-experimental-differentiable-programming` frontend flag.
- Importing the `_Differentiation` module.
Importing the `_Differentiation` module is the true condition because it
contains the required compiler-known `Differentiable` protocol. The frontend
flag is redundant and cumbersome.
Now, the frontend flag is removed.
Importing `_Differentiation` is the only condition.
This code rearchitects and simplifies the projectEnumValue support by
introducing a new `TypeInfo` subclass for each kind of enum, including trivial,
no-payload, single-payload, and three different classes for multi-payload enums:
* "UnsupportedEnum" that we don't understand. This returns "don't know" answers for all requests in cases where the runtime lacks enough information to accurately handle a particular enum.
* MP Enums that only use a separate tag value. This includes generic enums and other dynamic layouts, as well as enums whose payloads have no spare bits.
* MP Enums that use spare bits, possibly in addition to a separate tag. This logic can only be used, of course, if we can in fact compute a spare bit mask that agrees with the compiler.
The final challenge is to choose one of the above three handlings for every MPE. Currently, we do not have an accurate source of information for the spare bit mask, so we never choose the third option above. We use the second option for dynamic MPE layouts (including generics) and the first for everything else.
TODO: Once we can arrange for the compiler to expose spare bit mask data, we'll be able to use that to drive more MPE cases.
* Add all [differential operators](https://github.com/apple/swift/blob/master/docs/DifferentiableProgramming.md#list-of-differential-operators).
* Add `withoutDerivative(at:)`, used for efficiently stopping the derivative propagation at a value and causing the derivative at the value to be zero.
* Add utility `differentiableFunction(from:)`, used for creating a `@differentiable` function from an original function and a derivative function.
Mostly work done by @marcrasi and @dan-zheng.
Partially resolves TF-843.
TODO:
* Add `AnyDerivative`.
* Add `Array.differentiableMap(_:)` and `differentiableReduce(_:_:)`.
I've verified that all of the header files in this module already
contain their own `extern "C"` blocks that are activated if compiling as
C++.
The additional [extern_c] attribute causes problems for some headers,
like PathCch.h, that define additional overloads of functions when
compiled as C++. The "global" [extern_c] essentially switches off name
mangling with these overloads, which causes them to conflict with the
functions they are overloading.
See here for more context:
https://github.com/apple/swift/pull/30233#issuecomment-601594221
See here for an example of failures caused by the [extern_c]:
https://ci-external.swift.org/job/swift-PR-windows/869/console
(Search for "PathCch.h".)
Round up our malloc requests and assert that breadcrumbs are aligned
and where we think they should be. This is necessary because ASAN
doesn't give us pointer-rounded sizes.
* First part of multi-payload enum support
This handles multi-payload enums with fixed
layouts that don't use spare payload bits.
It includes XI calculations that allow us to
handle single-payload enums where the payload
ultimately includes a multi-payload enum
(For example, on 32-bit platforms, String uses
a multi-payload enum, so this now supports single-payload
enums carrying Strings.)
This seems to be the single most common bridge cast,
and repeated lookup seems to be a performance issue
for the common operation of bridging a string-valued
NSDictionary into Swift. Spending a couple of static
words of memory to memoize it should be a nice perf win.
Resolves rdar://55237013
Teach RemoteMirror how to project enum values
This adds two new functions to the SwiftRemoteMirror
facility that support inspecting enum values.
Currently, these support non-payload enums and
single-payload enums, including nested enums and
payloads with struct, tuple, and reference payloads.
In particular, it handles nested `Optional` types.
TODO: Multi-payload enums use different strategies for
encoding the cases that aren't yet supported by this
code.
Note: This relies on information from dataLayoutQuery
to correctly decode invalid pointer values that are used
to encode enums. Existing clients will need to augment
their DLQ functions before using these new APIs.
Resolves rdar://59961527
```
/// Projects the value of an enum.
///
/// Takes the address and typeref for an enum and determines the
/// index of the currently-selected case within the enum.
///
/// Returns true iff the enum case could be successfully determined.
/// In particular, note that this code may fail for valid in-memory data
/// if the compiler is using a strategy we do not yet understand.
SWIFT_REMOTE_MIRROR_LINKAGE
int swift_reflection_projectEnumValue(SwiftReflectionContextRef ContextRef,
swift_addr_t EnumAddress,
swift_typeref_t EnumTypeRef,
uint64_t *CaseIndex);
/// Finds information about a particular enum case.
///
/// Given an enum typeref and index of a case, returns:
/// * Typeref of the associated payload or zero if there is no payload
/// * Name of the case if known.
///
/// The Name points to a freshly-allocated C string on the heap. You
/// are responsible for freeing the string (via `free()`) when you are finished.
SWIFT_REMOTE_MIRROR_LINKAGE
int swift_reflection_getEnumCaseTypeRef(SwiftReflectionContextRef ContextRef,
swift_typeref_t EnumTypeRef,
unsigned CaseIndex,
char **CaseName,
swift_typeref_t *PayloadTypeRef);
```
Co-authored-by: Mike Ash <mikeash@apple.com>