We have (and important!) assertion that our claimed allocation is
complete and the breadcrumbs are falling where we expect them
to. Something about ASAN changes the allocation behavior. Temporarily
disable this assertion until I can figure how to work with ASAN here.
* Don't allocate breadrumbs pointer if under threshold
* Increase breadrumbs threshold
* Linear 16-byte bucketing until 128 bytes, malloc_size after
* Allow cap less than _SmallString.capacity (bridging non-ASCII)
This change decreases the amount of heap usage for moderate-length
strings (< 64 UTF-8 code units in length) and increases the amount of
spare code unit capacity available (less growth needed).
Average improvements for moderate-length strings:
* 64-bit: on average, 8 bytes saved and 4 bytes of extra capacity
* 32-bit: on average, 4 bytes saved and 6 bytes of extra capacity
Additionally, on 32-bit, large-length strings also gain an average of
6 bytes of extra spare capacity.
Details:
On 64-bit, half of moderate-length allocations will save 16 bytes
while the other half get an extra 8 bytes of spare capacity.
On 32-bit, a quarter of moderate-length allocations will save 16
bytes, and the rest get an extra 4 bytes of spare
capacity. Additionally, 32-bit string's storage class now claims its
full allocation, which is its birthright. Prior to this change, we'd
have on average 1.5 bytes of spare capacity, and now we have 7.5 bytes
of spare capacity.
Breadcrumbs threshold is increased from the super-conservative 32 to
the pretty-conservative 64. Some speed improvements are incorporated
in this change, but more are in flight. Even without those eventual
improvements, this is a worthwhile change (ASCII is still fast-pathed
and irrelevant to breadcrumbing).
For a complex real-world workload, this amounts to around a 5%
improvement to transient heap usage due to all strings and a 4%
improvement to peak heap usage due to all strings. For moderate-length
strings specifically, this gives around 11% improvement to both.
Confirmed this change on using the swift-5.2-DEVELOPMENT-SNAPSHOT-2020-01-22-a
toolchain, Apple Swift version 5.2-dev (Swift d3f0448a4c).
Fixes rdar://problem/58717942
The demangler tolerates arbitrary suffixes on mangled names, and parses them as a Suffix node. When looking up a class by an ObjC mangled name, we don't want such demanglings to succeed, because this will result in false positives. It's expected that NSClassFromString(someClassName + "some suffix") will fail, unless something has actually created a class with that suffix.
rdar://problem/60012296
Provide a separate modulemap for OpenBSD's libc, rather than try to
continue to overload the modulemap for glibc, since glibc has its own
idiosyncracies.
These should hopefully all be uncontroversial, minimal changes to deal
with progressing the build to completion on OpenBSD or addressing minor
portability issues. This is not the full set of changes to get a
successful build; other portability issues will be addressed in future
commits.
Most of this is just adding the relevant clauses to the ifdefs, but of
note in this commit:
* StdlibUnittest.swift: the default conditional in _getOSVersion assumes
an Apple platform, therefore the explicit conditional and the relevant
enums need filling out. The default conditional should be #error, but
we'll fix this in a different commit.
* tgmath.swift.gyb: inexplicably, OpenBSD is missing just lgammal_r.
Tests are updated correspondingly.
* ThreadLocalStorage.h: we use the pthread implementation, so it
seems we should typedef __swift_thread_key_t as pthread_key_t.
However, that's also a tweak for another commit.
This builtin (which lowers to raw SIL that doesn't use an actual builtin
instruction) allows us to access an unmanaged value at +0 with a language
guarantee rather than relying on the optimizer.
Previously, we did not do this directly since without OSSA, we were scared that
the frontend/optimizer would not be able to safely emit this code. Now that we
have ownership ssa, we are able to ensure that the frontend always copies the +0
value passed into the closure if the value +0 escapes from the closure (either
via a return, storing into memory, or by passing off as a +1 parameter to a
function).
rdar://59735604
This adds the RangeSet and DiscontiguousSlice types, as well as collection
operations for working with discontiguous ranges of elements. This also adds
a COWLoggingArray type to the test suite to verify that mutable collection
algorithms don't perform unexpected copy-on-write operations when mutating
slices mid-operation.