If a Swift key path has root type inferred but does not have a leading dot,
then diagnose it, because it's not valid.
For example:
```swift
struct Foo {
let property: [Int] = []
let kp: KeyPath<Foo, Int> = \property.count // error
}
```
Resolves SR-12290
Resolves rdar://problem/59874355
Previously we were bailing early on encountering
an optional chain in the key path. However this
could cause us to miss invalid components further
down the line. Instead, set a flag and force the
key path to be read-only if we encountered an
optional chain.
Resolves SR-12519.
Previously we could skip default literal or
supertype bindings if we had already found a solution
with fixes, which could lead us to miss bindings
that produce better diagnostics.
Tweak the logic such that we continue exploring if
we're in diagnostic mode.
Resolves SR-12399.
`_` or discard assignment expression should only be used on the left-hand
side of the assignment expression. Incorrect uses are easy to detect during
constraint generation which also allows us to avoid complications related
to other diagnostics when `_` is used incorrectly.
Reverts apple/swift#30006. It caused a regression that we'd like to address before re-landing:
```swift
struct X {
var cgf: CGFloat
}
func test(x: X?) {
let _ = (x?.cgf ?? 0) <= 0.5
}
```
This reverts commit 0a6b444b49.
This reverts commit ed255596a6.
This reverts commit 3e01160a2f.
This reverts commit 96297b7e39.
Resolves: rdar://problem/60185506
Prioritize type mismatches over conformance failures when stdlib
types are involved because it wouldn't be appropriate to suggest
to add such a conformance, so the problem is most likely related
to something else e.g. other overload choice has a better fix.
Consider following example:
```swift
struct S {
init(_: Double) {}
init<T: BinaryInteger>(_: T) {}
}
_ = S(Double("0"))
```
In cases like that it's better to prefer failable initializer
which takes a `String` and returns `Double?` and diagnose a
problem related to missing optional unwrap instead of missing
conformances related to a `String` argument of other `Double`
initializer just because it returns a concrete type.
Since `simplifyRestrictedConstraintImpl` has both parent types and
does nested type matching it's a good place to diagnose top-level
contextual problems like mismatches in underlying types of optionals.
Since opening closure body is now delayed until contextual type becomes
available it's possible to infer anonymous parameters as being variadic
based on context and propagate that information down to the closure body.
Resolves: rdar://problem/41416758
If a type variable representing "function type" is a hole
or it could be bound to some concrete type with a help of
a fix, let's propagate holes to the "input" type. Doing so
provides more information to upcoming argument and result matching.
A TopLevelCodeDecl is a local context and any declarations inside
of one must be treated as captures. Furthermore, all the
TopLevelCodeDecl children of a source file are peers, and can
see each other's bindings, so don't perform an exact match on the
DeclContext.
Part of <rdar://problem/23051362> / <https://bugs.swift.org/browse/SR-3528>.
* WIP implementation
* Cleanup implementation
* Install backedge rather than storing array reference
* Add diagnostics
* Add missing parameter to ResultFinderForTypeContext constructor
* Fix tests for correct fix-it language
* Change to solution without backedge, change lookup behavior
* Improve diagnostics for weak captures and captures under different names
* Remove ghosts of implementations past
* Address review comments
* Reorder member variable initialization
* Fix typos
* Exclude value types from explicit self requirements
* Add tests
* Add implementation for AST lookup
* Add tests
* Begin addressing review comments
* Re-enable AST scope lookup
* Add fixme
* Pull fix-its into a separate function
* Remove capturedSelfContext tracking from type property initializers
* Add const specifiers to arguments
* Address review comments
* Fix string literals
* Refactor implicit self diagnostics
* Add comment
* Remove trailing whitespace
* Add tests for capture list across multiple lines
* Add additional test
* Fix typo
* Remove use of ?: to fix linux build
* Remove second use of ?:
* Rework logic for finding nested self contexts
Since `binding` has all of the required information now it's possible
to use its `locator` as a source of type variable assignment
(`Bind` constraint) in `TypeVariableBinding::attempt` which helps
to improve diagnostics.
If return type is a function, it's possible to return a closure
which can have some of its arguments unused in the body e.g.
`let _: () -> ((Int) -> Void) = { return { } }`
In this case resulting closure has to use its only parameter or
explictly ignore it by declaring `_ in`.
Initially this problem was only detected and diagnosed for calls.
So let's extend it to function conversions as well e.g.:
```swift
func foo<T>(_: [T]) {}
func bar<T>(_ f: (T...) -> ()) {}
bar { foo($0) }
```
In the past, this error was applied inconsistently, so diagnosing it
correctly is now a source-breaking change. Instead, diagnose it correctly,
but as a warning.
* [Sema][Diagnostics] Add fixit for warning when inferring an undesirable type
* [Sema][Diagnostics] Generalize undesirable type warning to include arrays of empty tuples
https://bugs.swift.org/browse/SR-11511
All of the argument diagnostics have been ported to the new diagnostic
framework, so now is the time to remove `ArgumentMatcher` and the only
place where it was used - `diagnoseSingleCandidateFailures`.