After setting up the .swiftsourceinfo file, this patch starts to actually serialize
and de-serialize source locations for declaration. The binary format of .swiftsourceinfo
currently contains these three records:
BasicDeclLocs: a hash table mapping from a USR ID to a list of basic source locations. The USR id
could be retrieved from the following DeclUSRs record using an actual decl USR. The basic source locations
include a file ID and the results from Decl::getLoc(), ValueDecl::getNameLoc(), Decl::getStartLoc() and Decl::getEndLoc().
The file ID could be used to retrieve the actual file name from the following SourceFilePaths record.
Each location is encoded as a line:column pair.
DeclUSRS: a hash table mapping from USR to a USR ID used by location records.
SourceFilePaths: a hash table mapping from a file ID to actual file name.
BasicDeclLocs should be sufficient for most diagnostic cases. If additional source locations
are needed, we could always add new source location records without breaking the backward compatibility.
When de-serializing the source location from a module-imported decl, we calculate its USR, retrieve the USR ID
from the DeclUSRS record, and use the USR ID to look up the basic location list in the BasicDeclLocs record.
For more details about .swiftsourceinfo file: https://forums.swift.org/t/proposal-emitting-source-information-file-during-compilation
Like the last commit, SourceFile is used a lot by Parse and Sema, but
less so by the ClangImporter and (de)Serialization. Split it out to
cut down on recompilation times when something changes.
This commit does /not/ split the implementation of SourceFile out of
Module.cpp, which is where most of it lives. That might also be a
reasonable change, but the reason I was reluctant to is because a
number of SourceFile members correspond to the entry points in
ModuleDecl. Someone else can pick this up later if they decide it's a
good idea.
No functionality change.
Most of AST, Parse, and Sema deal with FileUnits regularly, but SIL
and IRGen certainly don't. Split FileUnit out into its own header to
cut down on recompilation times when something changes.
No functionality change.
DelayedParsingCallbacks only had one implementation, for code
completion, which is only used to determine which bodies to skip and
which to delay. Inline that logic into the parser's delay logic and
remove DelayedParsingCallbacks entirely.
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances in the swift repo.
We want SILGen and IRGen to also be able to trigger delayed parsing if
necessary, so tweak things here a bit. For now this is NFC, since name
lookup triggers delayed parsing of all types and extensions the first
time a name lookup is performed -- but that is about to change.
This mode is supposed to get all its configuration information from
the switftinterface being read in, but that means that the ASTContext
and ClangImporter that get created by default may not be a sensible
configuration (for example, a mismatched target and SDK, which Clang
emits a warning about). Avoid this by just not creating the ASTContext
if it's already been determined that the frontend is building a module
from a parseable interface.
form SerializedModuleLoader into its own ModuleLoader class. (NFC-ish)
This gives better control over the order in which the various module
load mechanisms are applied.
Replaces SearchPathOptions::RuntimeLibraryImportPath with an equivalent std::vector of paths. Also reimplements SearchPathOptions::SkipRuntimeLibraryImportPaths to cause the list of runtime library import paths to be empty, rather than exiting early from SerializedModuleLoader::findModule().
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
We already have something called "module interfaces" -- it's the
generated interface view that you can see in Xcode, the interface
that's meant for developers using a library. Of course, that's also a
textual format. To reduce confusion, rename the new module stability
feature to "parseable [module] interfaces".
Textual module interfaces don't actually depend on SILGen, so we
shouldn't need to run SILGen (or serialize an entire binary module) if
we're just trying to emit a textual interface. On the other hand, if
we /are/ going to run SILGen and then SIL diagnostics, we shouldn't
delay those diagnostics by spending time emitting a textual interface,
or for that matter a TBD file.
Using this, update all the ModuleInterface tests that use
`-emit-module -o /dev/null` to use `-typecheck` instead, except for
those using `-merge-modules`.
The use of `std::move` forces the complete definition of the `SILModule` type.
Move the definition out-of-line to allow a forward declaration of `SILModule`
instead.
Adds the -vfsoverlay frontend option that enables the user to pass
VFS overlay YAML files to Swift. These files define a (potentially
many-layered) virtual mapping on which we predicate a VFS.
Switch all input-based memory buffer reads in the Frontend to the new
FileSystem-based approach.
Introduces the -name-bind frontend action that is intended as an intermediary between the parse-only actions and a full typechecking pass. In this phase, module imports will be validated and resolved, making it possible to emit full make-style dependencies files among other things.
Note that all information available to a parse-only pass is available to name binding, but because it does not continue-on to typecheck input files, full semantic information is not.
This may help us reproduce a failing build when all we have is a build
log, and will become much more important in batch mode when we
/really/ need to know what ended up in what batch.
For now, this doesn't include /output/ filelists, because David's
about to mess with that code anyway to make things better around
supplementary outputs in batch mode. There is one weirdness there,
though, which is that ArgsToFrontendInputsConverter peeks at the
outputs to see whether we're doing single-threaded or multi-threaded
WMO.