This commit refactors the way ASTs are being built in SourceKit and how `SwiftASTConsumer`s are served by the built ASTs. `SwiftASTManager.h` should give an overview of the new design.
This commit does not change the cancellation paradigm in SourceKit (yet). That is, subsequent requests with the same `OncePerASTToken` still cancel previous requests with the same token. But while previously, we were only able to cancel requests that haven’t started an AST build yet, we can now also cancel the AST build of the to-be-cancelled requests.
With this change in place, we can start looking into explicit cancellation of requests or other cancellation paradigms.
for unapplied references when the choice is a function declaration.
This will allow the solver to prune those overload choices when it
has already found a solultion with a property (all else equal in the
score). This is already done as an ambiguity tie-breaker in solution
ranking, but adding this bit to the score will prune a lot of search
space within the solver.
Instead of passing pattern directly, let's fetch it from the pattern
binding and remove extra argument from `SolutionApplicationTarget::forUninitializedVar`.
- Explicitly limit favoring logic to only handle
unary args, this seems to have always been the
case, but needs to be handled explicitly now that
argument lists aren't exprs
- Update the ConstraintLocator simplification to
handle argument lists
- Store a mapping of locators to argument lists
in the constraint system
- Abstract more logic into a getArgumentLocator
method which retrieves an argument-to-param locator
from an argument anchor expr
Detect situations when type of a declaration hasn't been resolved yet
(one-way constraints would use a type variable to represent a type of IUO pattern),
and use additional type variable and a constraint to represent an
object type of a future optional type.
Resolves: SR-14893
Resolves: rdar://80271666
This is a follow-up to the uninitialized variable generalization.
Pattern binding declaration has to be stored together with the
variable because all of the entries in `SolutionApplicationTarget`
form a union.
`SolutionApplicationTargetsKey` was constructing pattern binding
entries with incorrect `kind`, which led to crashes for pattern
bindings with multiple initialized entries.
* [ConstraintSystem] NFC: Rename `openOpaqueTypeRec` and make `openOpaqueType` private for individual types
* [ConstraintSystem] Require a contextual purpose for `openOpaqueType(Type, ...)`
Some of the contexts require special handling e.g. return type of a function
can only open directly declared opaque result type(s), this would be
implemented in a follow-up commit.
* [ConstraintSystem] Open only directly declared opaque types related to return statements
Re-establish a check which would only open opaque types directly
declared in the return type of a function/accessor declaration,
otherwise constraint system would end up with type variables it
has no context for if the type had generic parameters.
Resolves: rdar://81531010
wrapped parameters and wrapped properties.
This fixes a bug where @autoclosure was not propagated from the wrapper's
init(wrappedValue:) to a wrapped argument.
I missed this case when previously improving the
logic here. As it turns out, using the raw anchor
as the root expression from which to derive parent
information is insufficient. This is because it
may not capture relevant parent exprs not a part
of the fix locator.
Instead, pass down a function that can be used to
derive the parent expressions from the constraint
system's own parent map. Also make sure to assign
to `expr` for the UnresolvedMemberChainResultExpr
case to make sure we correctly check for it as a
sub-expression.
Finally, now that we're looking at more parent
exprs, add logic to handle `try` and `await`
parents, as well as ClosureExprs and
CollectionExprs. I couldn't come up with a test
case for CollectionExpr, as we emit different
diagnostics in that case, but it's probably better
to tend on the side of being more future proof
there.
rdar://81512079
* [TypeResolver][TypeChecker] Add support for structural opaque result types
* [TypeResolver][TypeChecker] Clean up changes that add structural opaque result types
In 2eeff365b1 I forgot to copy key path component types when applying a solution to the constraint system. That caused a crash in key path code completion.
Fixes rdar://81118700 [SR-14979]
The added test case fails because the result builder inside `List2` is being type checked twice: Once for every overload of `List2`. Because of the way that result builders are being type checked right now, each overload of `List2` creates a new type variable for the key components in `foo` and the constraint system only keeps track of the key path component -> type mapping for the last solution discovered.
When we are now trying to look up the type of the first key path component for the first solution, the constraint system returns the type variable that is being used by the second solution and simplifying that type variable through the first solution fails because it doesn’t know about the type variable.
To fix the issue, make sure that the solutions keep track of the their type variables associated to key path components. That way the first solution owns its own key path component -> type variable mapping and is thus also able to simplify the type variable it has associated with the component.
Fixes rdar://80522345 [SR-14916]
To check whether the code completion node was type checked in a multi statement closure, we were assuming that we had a code completion *expression* and not considering that we could also complete in a key path component. When applicable, check if the completion key path component has a type to determine if the completion node was type checked as part of a multi-statement closure.
Resolves rdar://80271598 [SR-14891]
AutoClosureExprs created by the constraint system used to be constructed
with the decl context of the constraint system itself. This meant that
autoclosures in expressions nested in closures would initially be
parented onto any enclosing functions rather than the deepest closure
context. When we ran capture analysis and lookup from inside of the body
of these nascent values, we would fail to find declarations brought into
scope by those parent closures. This is especially relevant when
pre-typechecked code is involved since captures for those declarations
will be forced before their bodies have been recontextualized. See
issue #34230 for why we need to force things so early.
The attached test case demonstrates both bugs: The former a bogus lookup
through the parent context that would incorrectly reject this otherwise
well-formed code. The latter is a crash in SILGen when the capture
computation would fail to note $0.
Use the decl context of the solution application target, which is always
going to be the deepest user-written closure expression available to us,
and therefore the deepest scope that can introduce capturable variables.
rdar://79248469
Allow type variable binding producer to record types as they
are being produced. Otherwise it could be possible to re-discover
already explored types during `computeNext()` which leads to
duplicate bindings e.g. inferring fallback `Void` for a closure
result type when `Void` was already inferred as a direct/transitive
binding.