On OpenBSD, malloc introspection (e.g., malloc_usable_size or
malloc_size) is not provided by the platform allocator. Since allocator
introspection is currently a load-bearing piece of functionality for
ManagedBuffer and ManagedBufferPointer, pending any API changes, as a
stopgap measure, this commit marks methods in ManagedBuffer and
ManagedBufferPointer calling _swift_stdlib_malloc_size and methods
dependent thereon unavailable on OpenBSD.
This may induce some compatibility issues for some files, but at least
this change ensures that we can get stdlib to build on this platform
until the evolution process addresses this problem more thoroughly.
- HeapBuffer was at the wrong abstraction level, for no good reason. We have ManagedBuffer for the general case; we don’t need a slightly less general variant of it.
- Current usages of HeapBuffer are hyper specific: they all are flat buffers of AnyObjects, facilitating bridging. It makes sense to dedicate _HeapBuffer for this single usecase.
- Introduce a dedicate ManagedBuffer subclass for bridging buffers. This will make it slightly easier to recognize these in heap dumps.
- Inlinability audit.
The functions in LibcShims are used externally, some directly and some through @inlineable functions. These are changed to SWIFT_RUNTIME_STDLIB_SPI to better match their actual usage. Their names are also changed to add "_swift" to the front to match our naming conventions.
Three functions from SwiftObject.mm are changed to SPI and get a _swift prefix.
A few other support functions are also changed to SPI. They already had a prefix and look like they were meant to be SPI anyway. It was just hard to notice any mixup when they were #defined to the same thing.
rdar://problem/35863717
- Revise Equatable and Hashable for synthesized requirements
- Complete Strideable and stride(from:...:by:) documentation
- Revise DoubleWidth type docs
- Add complexity notes for Set.index(of:) and .contains(_:)
- Fix typos in Set.formUnion docs
- Add missing axioms for SetAlgebra (SR-6319)
- Improve guidance for description and debugDescription
- Add note about the result of passing duplicate keys to
Dictionary(uniqueKeysWithValues:)
- Fix typo in BinaryInteger docs
- Update Substring docs with better conversion example
- Improve docs for withMemoryRebound and isKnownUniquelyReferenced
- Add missing docs not propagated from protocols
Previously often times when casting a value, we would just pass along the
cleanup of the uncasted value. With semantic SIL this is no longer correct since
the cleanup now needs to be on the cast result.
This caused problems for certain usages of Builtin.castToNativeObject(...) by
the stdlib. Specifically, the stdlib was using this on AnyObject values that
were not necessarily native. Since we were recreating the cleanup on the native
value, a swift native release was being used =><=.
In this commit I solve this problem by:
1. Adding an assert in Builtin.castToNativeObject(...) that ensures that any value
passed to Builtin.castToNativeObject() is known conservatively to use swift
native reference counting.
2. I changed all uses where we do not have a precondition of a native ref
counting type to use Builtin.castToUnknownObject(...).
3. I added a new Builtin called Builtin.unsafeCastToNativeObject(...) that does
not have the compile time check. I used this to rewrite callsites in the stdlib
where we know via preconditions that an AnyObject will dynamically always be
native.
rdar://29791263
* replace unused closure parameters with '_' in stdlib source
* fold some _ closure arguments into line above
* fold more _ closure arguments into line above
This revises and expands upon documentation for the standard library's
unsafe pointer types. This includes typed and raw pointers and buffers,
the MemoryLayout type, and some other top-level functions.
... instead of ManagedBufferPointer.
This is what we already did for Array, Set and Dictionary.
The intention is to simplify the generated SIL which is generated for ManagedBuffer operations.
Implements part of SE-0110. Single argument in closures will not be accepted if
there exists explicit type with a number of arguments that's not 1.
```swift
let f: (Int, Int) -> Void = { x in } // this is now an error
```
Note there's a second part of SE-0110 which could be considered additive,
which says one must add an extra pair of parens to specify a single arugment
type that is a tuple:
```swift
let g ((Int, Int)) -> Void = { y in } // y should have type (Int, Int)
```
This patch does not implement that part.