Previously, when creating a `SourceKit::CodeCompletion::Completion`, we needed to copy all fields from the underlying `SwiftResult` (aka `swift::ide::CodeCompletionResult`). The arena in which the `SwiftResult` was allocated still needed to be kept alive for the references stored in the `SwiftResult`.
To avoid this unnecessary copy, make `SourceKit::CodeCompletion::Completion` store a reference to the underlying `SwiftResult`.
This cleans up 90 instances of this warning and reduces the build spew
when building on Linux. This helps identify actual issues when
building which can get lost in the stream of warning messages. It also
helps restore the ability to build the compiler with gcc.
The various keyword/recommended/etc fields were parsed and added to
completions, but never actually plumbed through SourceKit. Since they're
still unused and the implementation is not particularly lightweight,
just remove for now.
Resolves rdar://82464220
* Implement 'getDiagnosticSeverity()' and 'getDiagnosticMessage()' on
'CodeCompletionResult'
* Differentiate 'RedundantImportIndirect' from 'RedundantImport'
* Make non-Sendable check respects '-warn-concurrency'
rdar://76129658
* 'CodeCompletionContext' now has 'requiresSourceFileInfo()' flag
* When 'true', 'SourceFiles' is populated.
* 'SourceFiles' is a list of pairs of a known module source
file path and its up-to-date-ness
* Clients (i.e. 'CodeCompletionConsumer') can retrieve it from
'CodeCompletionContext' in 'handleResults'
* Each completion item now has 'SourceFilePath' property
* C-APIs to get those informations
The `compare_lower` API was replaced with `compare_insensitive` in llvm
commit 2e4a2b8430aca6f7aef8100a5ff81ca0328d03f9.
git clang-format ran.
(cherry picked from commit aca2de95ee)
The `equals_lower` API was replaced with `equals_insensitive` in llvm
commit 2e4a2b8430aca6f7aef8100a5ff81ca0328d03f9 and
3eed57e7ef7da5eda765ccc19fd26fb8dfcd8d41.
Ran git clang-format.
(cherry picked from commit e21e70a6bf)
To describe fine grained priorities.
Introduce 'CodeCompletionFlair' that is a set of more descriptive flags for
prioritizing completion items. This aims to replace '
SemanticContextKind::ExpressionSpecific' which was a "catch all"
prioritization flag.
struct Foo {
init(_ arg1: String, arg2: Int) {}
init(label: Int) {}
}
func test(strVal: String) {
_ = Foo(<HERE>)
}
In this case, 'strVal' was prioritized because it can use as an argument
for 'init(_:arg2:)'. However, argument labels are almost always
preferable, and if the user actually want 'strVal', they can input a few
characters to get it at the top. So we should always prioritize call
argument patterns.
rdar://77188260
Combine IsNotRecommended with NotRecommendedReason and improve the names
of the existing cases to more clearly identify the cases they apply to.
Now all not-recommended completions are required to have a reason.
To help consolidate our various types describing imports, this commit moves the following types and methods to Import.h:
* ImplicitImports
* ImplicitStdlibKind
* ImplicitImportInfo
* ModuleDecl::ImportedModule
* ModuleDecl::OrderImportedModules (as ImportedModule::Order)
* ModuleDecl::removeDuplicateImports() (as ImportedModule::removeDuplicates())
* SourceFile::ImportFlags
* SourceFile::ImportOptions
* SourceFile::ImportedModuleDesc
This commit is large and intentionally kept mechanical—nothing interesting to see here.
This makes it easier to specify OptionSet arguments.
Also modify appropriate uses of ModuleDecl::ImportFilter to take
advantage of the new constructor.
When completing a single argument for a trailing closure, pre-expand the
closure expression syntax instead of using a placeholder. It's not valid
to pass a non-closure anyway.
rdar://62189182
func foo() {}
let a: Int = #^HERE^#
Previously, we marked 'foo()' as 'NotRecommented' because 'Void' doesn't
have any member hence it cannot be 'Int'. But it wass confusing with
'deprecated'.
Now that we output 'typerelation' which is 'invalid' in this case. So clients
can deprioritize results, or even filter them out.
rdar://problem/57726512
Check whether the user has provided a valid
identifier when parsing the options. Also make
ImplicitImportModuleNames a private member of
FrontendOptions to prevent mutation after being
parsed.
When a “separately imported overlay” is added to a SourceFile, two things happen:
1. The direct import of the underlying module is removed from getImports*() by default. It is only visible if the caller passes ImportFilterKind:: ShadowedBySeparateOverlay. This means that non-module-scoped lookups will search _OverlayModule before searching its re-export UnderlyingModule, allowing it to shadow underlying declarations.
2. When you ask for lookupInModule() to look in the underlying module in that source file, it looks in the overlays instead. This means that UnderlyingModule.foo() can find declarations in _OverlayModule.
- Introduce ide::CompletionInstance to manage CompilerInstance
- `CompletionInstance` vends the cached CompilerInstance when:
-- The compiler arguments (i.e. CompilerInvocation) has has not changed
-- The primary file is the same
-- The completion happens inside function bodies in both previous and
current completion
-- The interface hash of the primary file has not changed
- Otherwise, it vends a fresh CompilerInstance and cache it for the next
completion
rdar://problem/20787086
This simplifies the code and prevents an assertion failure this code was
hitting computing the type relations between the result types and what it
determined as the expected type.
Resolves rdar://problem/53958454
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances in the swift repo.
Comparing "false" > "true" will return 0, which when returned by compare
indicates the two are equal which will result in a non deterministic
ordering of "false" and "true". Using .compare returns a negative number
as expected.
This is an attribute that gets put on an import in library FooKit to
keep it from being a requirement to import FooKit. It's not checked at
all, meaning that in this form it is up to the author of FooKit to
make sure nothing in its API or ABI depends on the implementation-only
dependency. There's also no debugging support here (debugging FooKit
/should/ import the implementation-only dependency if it's present).
The goal is to get to a point where it /can/ be checked, i.e. FooKit
developers are prevented from writing code that would rely on FooKit's
implementation-only dependency being present when compiling clients of
FooKit. But right now it's not.
rdar://problem/48985979
...in preparation for me adding a third kind of import, making the
existing "All" kind a problem. NFC, except that I did rewrite the
ClangModuleUnit implementation of getImportedModules to be simpler!
Extend the support for single-expression closures to handle
single-expression functions of all kinds. This allows, e.g.
func foo() -> MyEnum { .<here> }
to complete members of `MyEnum`.
For now, the accessors have been underscored as `_read` and `_modify`.
I'll prepare an evolution proposal for this feature which should allow
us to remove the underscores or, y'know, rename them to `purple` and
`lettuce`.
`_read` accessors do not make any effort yet to avoid copying the
value being yielded. I'll work on it in follow-up patches.
Opaque accesses to properties and subscripts defined with `_modify`
accessors will use an inefficient `materializeForSet` pattern that
materializes the value to a temporary instead of accessing it in-place.
That will be fixed by migrating to `modify` over `materializeForSet`,
which is next up after the `read` optimizations.
SIL ownership verification doesn't pass yet for the test cases here
because of a general fault in SILGen where borrows can outlive their
borrowed value due to being cleaned up on the general cleanup stack
when the borrowed value is cleaned up on the formal-access stack.
Michael, Andy, and I discussed various ways to fix this, but it seems
clear to me that it's not in any way specific to coroutine accesses.
rdar://35399664
Calling '@objc optional func' requires '?' or '!' after its name. When
completing method calls for them, 'key.sourcetext' should have '?'
whereas 'key.name' shouldn't.
Note that we deliberately do not use optional type name for
'key.typename'. This is consistent with optional chain '?.<propertyName>'
behavior.
rdar://problem/37904574