Provide ASTWalker with a customization point to specify whether to
check macro arguments (which are type checked but never emitted), the
macro expansion (which is the result of applying the macro and is
actually emitted into the source), or both. Provide answers for the
~115 different ASTWalker visitors throughout the code base.
Fixes rdar://104042945, which concerns checking of effects in
macro arguments---which we shouldn't do.
Rather than having Sema set the same Optional
some decl, let's just store a pointer to the
ASTContext and retrieve it on demand.
Additionally, add `create` and `createImplicit`
factory methods.
Replace the use of bool and pointer returns for
`walkToXXXPre`/`walkToXXXPost`, and instead use
explicit actions such as `Action::Continue(E)`,
`Action::SkipChildren(E)`, and `Action::Stop()`.
There are also conditional variants, e.g
`Action::SkipChildrenIf`, `Action::VisitChildrenIf`,
and `Action::StopIf`.
There is still more work that can be done here, in
particular:
- SourceEntityWalker still needs to be migrated.
- Some uses of `return false` in pre-visitation
methods can likely now be replaced by
`Action::Stop`.
- We still use bool and pointer returns internally
within the ASTWalker traversal, which could likely
be improved.
But I'm leaving those as future work for now as
this patch is already large enough.
These will never appear in the source language, but can arise
after substitution when the original type is a tuple type with
a pack expansion type.
Two examples:
- original type: (Int, T...), substitution T := {}
- original type: (T...), substitution T := {Int}
We need to model these correctly to maintain invariants.
Callers that previously used to rely on TupleType::get()
returning a ParenType now explicitly check for the one-element
case instead.
Many, many, many types in the Swift compiler are intended to only be allocated in the ASTContext. We have previously implemented this by writing several `operator new` and `operator delete` implementations into these types. Factor those out into a new base class instead.
LLVM, as of 77e0e9e17daf0865620abcd41f692ab0642367c4, now builds with
-Wsuggest-override. Let's clean up the swift sources rather than disable
the warning locally.
VarPattern is today used to implement both 'let' and 'var' pattern bindings, so
today is already misleading. The reason why the name Var was chosen was done b/c
it is meant to represent a pattern that performs 'variable binding'. Given that
I am going to add a new 'inout' pattern binding to this, it makes sense to
give it now a better fitting name before I make things more confusing.
Property wrappers are allowed to infer the type of a variable, but this
only worked when the property wrapper was provided with an explicit
initialization, e.g.,
@WrapsAnInt() var x // infers type Int from WrapsAnInt.wrappedValue
However, when default initialization is supported by the property wrapper,
dropping the parentheses would produce an error about the missing type
annotation
@WrapsAnInt var x
Make this second case behave like the first, so that default initialization
works consistently with the explicitly-specified version.
Fixes rdar://problem/59471019.
Contextual pattern describes a particular pattern with enough
contextual information to determine its type. Use this to simplify
TypeChecker::typeCheckPattern()'s interface in a manner that will
admit request'ification.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
* [AST] Remove stored TypeLoc from TypedPattern
TypedPattern was only using this TypeLoc as a means to a TypeRepr, which
caused it to store the pattern type twice (through the superclass and through
the TypeLoc itself.)
This also fixes a bug where deserializing a TypedPattern doesn't store
the type correctly and generally cleans up TypedPattern initialization.
Resolves rdar://44144435
* Address review comments
Inline bitfields are a common design pattern in LLVM and derived
projects, but the associated boilerplate can be demotivating and
brittle. This new header makes it easier to define and use inline
bitfields in Swift.
This also reorders some fields for better code generation.
WalkToVarDecls should only walk within the current pattern, not into
any other nodes (especially not nodes that open a scope.)
Restricting this fixes the name lookup weirdness that caused the crash.
A lot of files transitively include Expr.h, because it was
included from SILInstruction.h, SILLocation.h and SILDeclRef.h.
However in reality most of these files don't do anything
with Exprs, especially not anything in IRGen or the SILOptimizer.
Now we're down to 171 files in the frontend which depend on
Expr.h, which is still a lot but much better than before.
In Swift 4 mode, no longer consider e.g. 'nsNumber as Int' or 'nsValue as NSRange' to be valid coercions. This would break compatibility with Swift 3, so in Swift 3 mode, accept the coercion, but *also* accept a checked cast without a warning, and raise a migration warning about the unchecked coercion.
Previously, bridging conversions were handled as a form of "explicit
conversion" that was treated along the same path as normal
conversions in matchTypes(). Historically, this made some
sense---bridging was just another form of conversion---however, Swift
now separates out bridging into a different kind of conversion that is
available only via an explicit "as". This change accomplishes a few
things:
* Improves type inference around "as" coercions. We were incorrectly
inferring type variables of the "x" in "x as T" in cases where a
bridging conversion was expected, which cause some type inference
failures (e.g., the SR-3319 regression).
* Detangles checking for bridging conversions from other conversions,
so it's easier to isolate when we're applying a bridging
conversion.
* Explicitly handle optionals when dealing with bridging conversions,
addressing a number of problems with incorrect diagnostics, e.g.,
complains about "unrelated type" cast failures that would succeed at
runtime.
Addresses rdar://problem/29496775 / SR-3319 / SR-2365.
- The DeclContext versions of these methods have equivalents
on the DeclContext class; use them instead.
- The GenericEnvironment versions of these methods are now
static methods on the GenericEnvironment class. Note that
these are not made redundant by the instance methods on
GenericEnvironment, since the static methods can also be
called with a null GenericEnvironment, in which case they
just assert that the type is fully concrete.
- Remove some unnecessary #includes of ArchetypeBuilder.h
and GenericEnvironment.h. Now changes to these files
result in a lot less recompilation.
The ASTContext-level map of delayed pattern contexts is a DenseMap
that could get reallocated by lazy deserialization of generic
environments. Don't re-use an iterator across the potential lazy
deserialization.
When a pattern within a type context is serialized, serialize its
interface type (not its contextual type). When deserializing, record
the interface type and keep a side table of the associated
DeclContext, so that we can lazily map to the contextual type on first
access. This is designed to break recursion when we change the way
archetypes and generic environments are serialized.
Fixes SR-1050, where @NSManaged subpatterns were not yet visited, and
thus still were deemed 'stored', by the time getStorage() was called
on the whole pattern. Change this to check the subpattern storage as
we go. Test case added.
This class formalizes the common case of the "trailing allocation" idiom we use
frequently. I didn't spot any true bugs while making this change, but I did see
places where we were using the wrong pointer type or casting through void* for
no good reason. This will keep us honest.
I'll get to the other libraries soon.
Parameters (to methods, initializers, accessors, subscripts, etc) have always been represented
as Pattern's (of a particular sort), stemming from an early design direction that was abandoned.
Being built on top of patterns leads to patterns being overly complicated (e.g. tuple patterns
have to have varargs and default parameters) and make working on parameter lists complicated
and error prone. This might have been ok in 2015, but there is no way we can live like this in
2016.
Instead of using Patterns, carve out a new ParameterList and Parameter type to represent all the
parameter specific stuff. This simplifies many things and allows a lot of simplifications.
Unfortunately, I wasn't able to do this very incrementally, so this is a huge patch. The good
news is that it erases a ton of code, and the technical debt that went with it. Ignoring test
suite changes, we have:
77 files changed, 2359 insertions(+), 3221 deletions(-)
This patch also makes a bunch of wierd things dead, but I'll sweep those out in follow-on
patches.
Fixes <rdar://problem/22846558> No code completions in Foo( when Foo has error type
Fixes <rdar://problem/24026538> Slight regression in generated header, which I filed to go with 3a23d75.
Fixes an overloading bug involving default arguments and curried functions (see the diff to
Constraints/diagnostics.swift, which we now correctly accept).
Fixes cases where problems with parameters would get emitted multiple times, e.g. in the
test/Parse/subscripting.swift testcase.
The source range for ParamDecl now includes its type, which permutes some of the IDE / SourceModel tests
(for the better, I think).
Eliminates the bogus "type annotation missing in pattern" error message when a type isn't
specified for a parameter (see test/decl/func/functions.swift).
This now consistently parenthesizes argument lists in function types, which leads to many diffs in the
SILGen tests among others.
This does break the "sibling indentation" test in SourceKit/CodeFormat/indent-sibling.swift, and
I haven't been able to figure it out. Given that this is experimental functionality anyway,
I'm just XFAILing the test for now. i'll look at it separately from this mongo diff.
is used by precisely one thing (producing a warning in a scenario that is obsolete
because we deprecated the entire thing), so the complexity isn't worth it anymore.
Requiring a variadic parameter to come at the end of the parameter
list is an old restriction that makes no sense nowadays, and which we
had all thought we had already lifted. It made variadic parameters
unusable with trailing closures or defaulted arguments, and made our
new print() design unimplementable.
Remove this restriction, replacing it with a less onerous and slightly
less silly restriction that we not have more than one variadic
parameter in a given parameter clause. Fixes rdar://problem/20127197.
Swift SVN r30542
- Enable 'catch is NSError' and 'catch let e as NSError {' patterns to
a) work, and b) be considered to be exhaustive catches. This enables
people to catch an error and *use* it as an NSError directly, instead
of having to do boiler-platey cases. This is particularly important
for the migrator.
- Do not warn about non-noop coersion casts (like "_ as NSError" when
matching an ErrorType), since they provide useful type adjustment to
the subpattern. Still warn on noop ones.
- Simplify CatchStmt::isSyntacticallyExhaustive to use
Pattern::isRefutablePattern. Add a FIXME, because the parser is guiding
closure "throws" inference before the pattern is type checked, which means
that it is incorrect (but only in subtle cases).
- When diagnosing pointless 'as' patterns like:
switch 4 {
case _ as Int: break
say "'as' test is always true" instead of "'is' test is always true".
Swift SVN r28774