* [TBDGen] Allow user-provided dylib version flags
This patch adds two frontend arguments, -tbd-compatibility-version and
-tbd-current-version, both of which accept SemVer versions.
These will show up in the generated TBD file for a given module as
current-version: 2.7
compatibility-version: 2.0
These flags both default to `1.0.0`.
* Reword some comments
* Add test for invalid version string
* Expand on comments for TBD flags
This is helpful in experimenting with constraint solver changes that
might help us remove some of these unsound options. It's not ever mean
to be enabled, but if we're able to remove the things guarded by the
option we can eventually remove the option.
...but don't hook it up to anything yet.
This is the very very start of the module stability / textual
interfaces feature described at
https://forums.swift.org/t/plan-for-module-stability/14551/
For now I've just made it a frontend option (not a driver option),
which is good enough for testing.
Introduce a command-line option to visualize the complete set of output
request dependencies evaluated by a particular compile action. This is
exposing existing visualization facilities to the (-frontend) command line.
We sometimes see expression type checking times increase dramatically
when this is enabled, and having a way to disable will make it
possible to easily do measurements to determine the cost/benefit of
having this enabled.
As a debugging aid, introduce a new frontend flag `-debug-cycles` that
will emit a debug dump whenever the request-evaluator encounters a cyclic
dependency, while otherwise allowing compilation to continue.
When running Swift from within LLDB, we need to bypass resilience since LLDB
does not support resilience yet. However, the bypass was done too early as
part of the module loader, which had the effect of disabling resilience
altogether.
We still want resilience at the SIL level so that function types lower the
same with debugger support turned on and off. Only IRGen needs to bypass
resilience, so that LLDB can calculate fragile layouts of types. Also, the
DebuggerSupport flag is not always set in the ASTContexts created by LLDB.
So replace it with a new flag that only controls this behavior and nothing
else, and make it part of IRGenOptions to make it totally clear that it only
impacts IRGen.
Together with the paired LLDB change, fixes <rdar://problem/38719739>
and <rdar://problem/38483762>.
It was only used in a few tests. Those tests now use -emit-sil instead
of -emit-silgen, with some functions marked @_transparent and a few
CHECK: lines changed now that the mandatory optimizations get to run.
The initial version of the debugger testing transform instruments
assignments in a way that allows the debugger to sanity-check its
expression evaluator.
Given an assignment expression of the form:
```
a = b
```
The transform rewrites the relevant bits of the AST to look like this:
```
{ () -> () in
a = b
checkExpect("a", stringForPrintObject(a))
}()
```
The purpose of the rewrite is to make it easier to exercise the
debugger's expression evaluator in new contexts. This can be automated
by having the debugger set a breakpoint on checkExpect, running `expr
$Varname`, and comparing the result to the expected value generated by
the runtime.
While the initial version of this testing transform only supports
instrumenting assignments, it should be simple to teach it to do more
interesting rewrites.
There's a driver script available in SWIFT_BIN_DIR/lldb-check-expect to
simplfiy the process of launching and testing instrumented programs.
rdar://36032055
This way we'll link against the key path component the other module provides instead of making fragile assumptions about its current implementation. Since external keypath lowering isn't fully implemented elsewhere in the compiler, this is enabled behind a staging flag.
external keypath staging
The current implementation isn't really useful in the face of generic
overloads. It has never been enabled by default, and isn't useful to
keep around if it is disabled. If we ever want to bring it back,
we know where to look!
The original hope was we could make these heuristics really good, but
since that is not currently in sight (and may never be), we want to be
able to turn them off. For now, just plumb through an internal flag to
control the behaviour. A future change will customize the behaviour in
SourceKit.
rdar://31113161
This is for testing purposes. I am not going to thread this further up into the
cmake since I am just going to be triggering this using -extra-swift-args from
build-script.
rdar://34222540
Add a verification pass to ensure that all of the generic signatures in
a module are both minimal and canonical. The approach taken is quite
direct: for every (canonical) generic signature in the module, try
removing a single requirement and forming a new generic signature from
the result. If that new generic signature that provide the removed
requirement, then the original signature was not minimal.
Also canonicalize each resulting signature, to ensure that it meets the
requirements for a canonical signature.
Add a test to ensure that all of the generic signatures in the Swift
module are minimal and canonical, since they are ABI.