This reverts commit afbdbae9d9.
Commit ded45a6e1c more than triples the
type checking time when building Swift.o, so I am going to revert that ,
and it looks like this needs to be reverted as well if that commit is
reverted.
Introduce `-enable-recursive-constraints` to disable the error about
direct recursion within a protocol definition. The implementation of
recursive protocol constraints is incomplete, but might be useful for
experimentation.
By default, end expression type checking after the elapsed process time
is more than 60 seconds for the current expression. This threshold can
be overridden by using -solver-expression-time-threshold=<seconds>.
Resolves rdar://problem/32859654
Generates a warning for any expression that takes longer than <limit>
milliseconds to type check. This compliments the existing
-warn-long-function-body=<limit> option.
Adoption so far shows that the criteria we set up here are too broad.
This is particularly problematic for subclasses of NS/UIView and the
like that might never be encoded at all.
rdar://problem/32306355
It can now:
- not validate (=none)
- validate that all symbols in the IR are also in the TBD (=missing),
- validate the above, and also that all in the TBD are in the IR (=all).
The first and last were switched between with the old boolean flag, the
second is new.
This is a bit more robust and user-friendly than hoping more brittle recovery in SILGen or IRGen for unsupported components kicks in. rdar://problem/32200714
For the multiple-files mode -emit-pch is still invoked in separate frontend invocation but with using a persistent PCH.
Subsequent frontend invocations use the persistent PCH but they don't need to validate it.
For all-files mode (e.g. WMO) the frontend invocation uses a persistent PCH that it also validates.
Some APIs that expected a String now expect a Substring and vice
versa. To ease the transition, emit fix-its on conversion errors
between these types that the migrator can pick up.
When converting from Substring -> String, suggest wrapping in
`String.init`.
When converting from String -> Substring, suggest appending the
void subscript `[]`. (This isn't implemented yet so this is
hidden behind a flag).
This can possibly be generalized later when converting between
some sequence and its subsequence, such as Array and ArraySlice,
for example.
rdar://problem/31665649
rdar://problem/31666638
If the -enable-experimental-subclass-existentials staging flag
is on, resolveType() now allows protocol compositions to contain
class types. It also diagnoses if a composition has more than one
superclass requirement.
Also, change diagnostics that talked about 'protocol composition'
to 'protocol-constrained type'.
Since such types can now contain a superclass constraint, it's not
correct to call them protocol composition.
"Protocol-constrained type" isn't quite accurate either because
'Any' has no protocols, and 'AnyObject' will have no protocols but
a general class constraint; but those are edge cases which won't
come up in these diagnostics.
I am going to run it very early and use it to ensure that extra copies due to my
refactoring of SILGenPattern do not cause COW copies to be introduced.
For now, it does a very simple optimization, namely, it eliminates a copy_value,
with only a destroy_value user on a guaranteed parameter.
It is now disabled behind a flag.
Previously we would drop all serialized SIL from partial swiftmodule
files generated while compiling source in non-WMO mode; all that was
missing was linking it in.
This adds a frontend flag, and a test; driver change is coming up
next.
Progress on <rdar://problem/18913977>.
The `-warn-swift3-objc-inference` option turns out to be extremely
useful in vetting code for unintended `@objc` entry points, so make it
available directly on `swiftc`.
But, bury the enable/disable flags under `-frontend` (they were
effectively there anyway because the driver wasn't propagating them).
Introduce an opt-in warning (enabled by the frontend option
-warn-swift3-objc-inference) for each declaration for which @objc is
inferred based on Swift 3 rules that no longer apply after SE-0160.
Flip the polarity of the frontend flag controlling whether TSan treats inout
accesses as conceptual writes. It is now on by default. This lets TSan detect
racing mutating methods even when those methods are not themselves instrumented
(such as methods on Standard Library collections).
This behavior can be disabled by passing:
-Xfrontend -disable-tsan-inout-instrumentation
when compiling under TSan.
rdar://problem/31069963
(This re-applies #7736 with an update to the
tsan-inout.swift execution test to handle configurations where
TSan's ignore_interceptors_accesses is enabled by default.)
Add SILGen instrumentation to treat inout accesses as Thread Sanitizer writes.
The goal is to catch races on inout accesses even when there is a not an
llvm-level read/write to a particular address. Ultimately
this will enable TSan to, for example, report racy writes to distinct
stored properties of a common struct as a data race.
This instrumentation is off by default. It can be enabled with the
'enable-experimental-tsan-inout-instrumentation' frontend flag.
The high-level approach is to add a SIL-level builtin that represents a call
to a TSan routine in compiler-rt. Then, when emitting an address for an LValue
as part of an inout expression, we call this builtin for each path component
that represents an LValue. I've added an 'isRValue()' method to PathComponent
that tracks whether a component represents an RValue or an LValue. Right the
only PathComponent that sometimes returns 'true' is ValueComponent().
For now, we're instrumenting only InoutExprs, but in the future it probably
makes sense to instrument all LValue accesses. In this patch I've
added a 'TSanKind' parameter to SILGenFunction::emitAddressOfLValue() and
its helpers to limit instrumentation to inout accesses. I envision that this
parameter will eventually go away.
Add SILGen instrumentation to treat inout accesses as Thread Sanitizer writes.
The goal is to catch races on inout accesses even when there is a not an
llvm-level read/write to a particular address. Ultimately
this will enable TSan to, for example, report racy writes to distinct
stored properties of a common struct as a data race.
This instrumentation is off by default. It can be enabled with the
'enable-experimental-tsan-inout-instrumentation' frontend flag.
The high-level approach is to add a SIL-level builtin that represents a call
to a TSan routine in compiler-rt. Then, when emitting an address for an LValue
as part of an inout expression, we call this builtin for each path component
that represents an LValue. I've added an 'isRValue()' method to PathComponent
that tracks whether a component represents an RValue or an LValue. Right the
only PathComponent that sometimes returns 'true' is ValueComponent().
For now, we're instrumenting only InoutExprs, but in the future it probably
makes sense to instrument all LValue accesses. In this patch I've
added a 'TSanKind' parameter to SILGenFunction::emitAddressOfLValue() and
its helpers to limit instrumentation to inout accesses. I envision that this
parameter will eventually go away.
SourceKit always sets it positively. This may lead to more aggressive fixits however
less informative messages. We currently use the flag only for filling protocol stubs.
This is disabled by default but enabled under the frontend option
-propagate-constraints.
The idea here is to have a pass that enforces local consistency in our
constraint system, in order to reduce the domains of constraint
variables, speeding up the solving of the constraint system.
The initial focus will be on reducing the size of the disjunctions for
function overloads with the hope that it substantially improves the
performance of type checking many expressions.
[NFC] Add -enable-sil-opaque-values frontend option.
This will be used to change the SIL-level calling convention for opaque values,
such as generics and resilient structs, to pass-by-value. Under this flag,
opaque values have SSA lifetimes, managed by copy_value and destroy_value.
This will make it easier to optimize copies and verify ownership.
* [SILGen] type lowering support for opaque values.
Add OpaqueValueTypeLowering.
Under EnableSILOpaqueValues, lower address-only types as opaque values.
* [SIL] Fix ValueOwnershipKind to support opaque SIL values.
* Test case: SILGen opaque value support for Parameter/ResultConvention.
* [SILGen] opaque value support for function arguments.
* Future Test case: SILGen opaque value specialDest arguments.
* Future Test case: SILGen opaque values: emitOpenExistential.
* Test case: SIL parsing support for EnableSILOpaqueValues.
* SILGen opaque values: prepareArchetypeCallee.
* [SIL Verify] allow copy_value for EnableSILOpaqueValues.
* Test cast: SIL serializer support for opaque values.
* Add a static_assert for ParameterConvention layout.
* Test case: Mandatory SILOpt support for EnableSILOpaqueValues.
* Test case: SILOpt support for EnableSILOpaqueValues.
* SILGen opaque values: TypeLowering emitCopyValue.
* SILBuilder createLoad. Allow loading opaque values.
* SIL Verifier. Allow loading and storing opaque values.
* SILGen emitSemanticStore support for opaque values.
* Test case for SILGen emitSemanticStore.
* Test case for SIL mandatory support for inout assignment.
* Fix SILGen opaque values test case after rebasing.