*Their* dependencies are already being serialized out, so this shouldn't affect
up-to-date-checking except by alowing the regular and prebuilt module caches to
be relocated without invalidating their contents. In the case of the prebuilt
module cache, this gets us closer to supporting relocation across machines.
Updates the subinvocation that builds the parseable interface to respect the
-track-system-dependencies flag of the top-level invocation if present, by
including system dependencies in the produced .swiftmodule.
When we build incrementally, we produce "partial swiftmodules" for
each input source file, then merge them together into the final
compiled module that, among other things, gets used for debugging.
Without this, we'd drop @_implementationOnly imports and any types
from the modules that were imported during the module-merging step
and then be unable to debug those types
...in preparation for me adding a third kind of import, making the
existing "All" kind a problem. NFC, except that I did rewrite the
ClangModuleUnit implementation of getImportedModules to be simpler!
In LLDB expressions, references to private metadata accessors may be
emitted and need to be bound to symbols available in the attached
program, even if these symbols are only supposed to have private
visibility within the program.
Also rdar://problem/48018240
When compiling SwiftOnoneSupport, issue errors for missing functions which are expected in the module.
This ensures ABI compatibility.
rdar://problem/48924409
I also removed the -verify-sil-ownership flag in favor of a disable flag
-disable-sil-ownership-verifier. I used this on only two tests that still need
work to get them to pass with ownership, but whose problems are well understood,
small corner cases. I am going to fix them in follow on commits. I detail them
below:
1. SILOptimizer/definite_init_inout_super_init.swift. This is a test case where
DI is supposed to error. The only problem is that we crash before we error since
the code emitting by SILGen to trigger this error does not pass ownership
invariants. I have spoken with JoeG about this and he suggested that I fix this
earlier in the compiler. Since we do not run the ownership verifier without
asserts enabled, this should not affect compiler users. Given that it has
triggered DI errors previously I think it is safe to disable ownership here.
2. PrintAsObjC/extensions.swift. In this case, the signature generated by type
lowering for one of the thunks here uses an unsafe +0 return value instead of
doing an autorelease return. The ownership checker rightly flags this leak. This
is going to require either an AST level change or a change to TypeLowering. I
think it is safe to turn this off since it is such a corner case that it was
found by a test that has nothing to do with it.
rdar://43398898
In addition to being wasteful, this is a correctness issue -- the
compiler should only ever have one view of this file, and it should not
read a potentially different file after validating dependencies.
rdar://48654608
I have been meaning to do this change for a minute, but kept on putting it off.
This describes what is actually happening and is a better name for the option.
...and remove the option. This is ~technically~ CLI-breaking because
Swift 5 shipped this as a hidden driver option, but it wouldn't have
/done/ anything in Swift 5, so I think it's okay to remove.
Note that if a parseable interface (.swiftinterface) and a binary
interface (.swiftmodule) are both present, the binary one will still
be preferred. This just /allows/ parseable interfaces to be used.
rdar://problem/36885834
With this change, swiftc will still look for standard library and overlay modules in ../lib/swift (relative to the compiler), but if it doesn’t find them there, it will now look in usr/lib/swift in the SDK.
Replaces SearchPathOptions::RuntimeLibraryImportPath with an equivalent std::vector of paths. Also reimplements SearchPathOptions::SkipRuntimeLibraryImportPaths to cause the list of runtime library import paths to be empty, rather than exiting early from SerializedModuleLoader::findModule().
Windows does not permit cross-module data accesses to be direct. This
is a problem for public protocols with root conformances which are
external. Use a runtime initialiser for the root protocol conformance
chaining to alleviate this issue. This shows up in the Foundation
build.
A ‘forwarding module’ is a YAML file that’s meant to stand in for a .swiftmodule file and provide an up-to-date description of its dependencies, always using modification times.
When a ‘prebuilt module’ is first loaded, we verify that it’s up-to-date by hashing all of its dependencies. Since this is orders of magnitude slower than reading mtimes, we’ll install a `forwarding module` containing the mtimes of the now-validated dependencies.
Add a bit to the module to determine whether the dependency’s stored bit pattern is a hash or an mtime.
Prebuilt modules store a hash of their dependencies because we can’t be sure their dependencies will have the same modtime as when they were built.
This is a follow up to the discussion on #22740 to switch the host
libraries to use the `target_link_libraries` rather than the
`LINK_LIBRARIES` special handling. This allows the dependency to be
properly tracked by CMake and allows us to use the more modern syntax.
This changes the Swift resource directory from looking like
lib/
swift/
macosx/
libswiftCore.dylib
libswiftDarwin.dylib
x86_64/
Swift.swiftmodule
Swift.swiftdoc
Darwin.swiftmodule
Darwin.swiftdoc
to
lib/
swift/
macosx/
libswiftCore.dylib
libswiftDarwin.dylib
Swift.swiftmodule/
x86_64.swiftmodule
x86_64.swiftdoc
Darwin.swiftmodule/
x86_64.swiftmodule
x86_64.swiftdoc
matching the layout we use for multi-architecture swiftmodules
everywhere else (particularly frameworks).
There's no change in this commit to how Linux swiftmodules are
packaged. There's been past interest in going the /opposite/ direction
for Linux, since there's not standard support for fat
(multi-architecture) .so libraries. Moving the .so search path /down/
to an architecture-specific directory on Linux would allow the same
resource directory to be used for both host-compiling and
cross-compiling.
rdar://problem/43545560
In addition to capturing more detailed preprocessor info, the
DetailedPreprocessorRecord option sets the clang module format to 'raw'
rather than the default 'object'. Sourcekitd doesn't link the code
generation libs, which it looks like the default 'object' format requires,
so it sets this option to true. The subinvocation generated when loading a
module from a .swiftinterface file still used the default prior to this
change though, so it would end up crashing sourcekitd.
This change sets the DetailedProccessorRecord option if the DetailedRecord
option is set on the preprocessor options of parent context's clang module
loader. This fixes interface generation crashing for modules that only have
a .swiftinterface file.
rdar://problem/43906499
We were checking the parent invocation's DiagnosticEnginer rather than the
subinstance's to determine if there were any errors building the module, which
meant we would fail to load the module if there were errors prior to the import
statement in the importing file.
This also meant code completion would fail to load the module, because it always
emits a bogus error in order to mark the AST as erroneous so that different
parts of the compiler (e.g. the verifier) have less strict assumptions.
rdar://problem/43906499