The layouts of resilient value types shipped in the Swift 5 standard library
x and overlays will forever be frozen in time for backward deployment to old
Objective-C runtimes. This PR ensures that even if the layouts of these types
evolve in the future, binaries built to run on the old runtime will continue
to lay out class instances in a manner compatible with Swift 5.
Fixes <rdar://problem/45646886>.
We were checking the parent invocation's DiagnosticEnginer rather than the
subinstance's to determine if there were any errors building the module, which
meant we would fail to load the module if there were errors prior to the import
statement in the importing file.
This also meant code completion would fail to load the module, because it always
emits a bogus error in order to mark the AST as erroneous so that different
parts of the compiler (e.g. the verifier) have less strict assumptions.
rdar://problem/43906499
The LLVM API for the temporary paths behaves differently on Windows and Unix.
Windows always returns the absolute path, and on Unix, you get whatever is in
the environment. Furthermore, windows allows both `\` and `/` as separators.
Normalise the path and make it absolute before doing the comparision to get a
comparable string.
Rather than eagerly doing a bunch of name lookups to establish the known
protocol kind, lazily match the ProtocolDecl to the list of known
protocols as-needed. This eliminates a bunch of up-front unqualified
name lookups when spinning up a type checker.
Previously, we included the PCH hash components in the cache key. While they didn’t do any harm, they didn’t contribute any unique information about the module in question.
Additionally, passing the effective language version in means that each dependency that uses a different -swift-version would re-compile all of its dependencies. This is unfortunate, as that means the standard library is recompiled potentially several times.
Hashing the contents of the interface files is overkill. In practice, size and last modification time are enough to determine if a file has changed on disk, and therefore should be rebuilt.
When -enable-anonymous-context-mangled-names is provided, emit mangled
names as part of the metadata of an anonymous context. This will allow
us to match textual mangled names to the metadata.
This is a backward-compatible ABI extension. Part of rdar://problem/38231646/.
If the frontend is invoked with
-build-module-from-parseable-interface, we might be trying to persist
and distribute the swiftmodule that gets built. In that case, any
dependencies we list might not be relevant.
This probably isn't really the final answer here; what we want is some
way to say /which/ dependencies are relevant, and how they're related
to how the swiftmodule that gets used. Most likely the right answer
here is to limit this to dependencies within the SDK or something.
Otherwise, the top-level compilation gets the benefit of the prebuilt
cache path, but the sub-invocations for swiftinterfaces that /do/
need to be compiled do not.
This is a little trickier than it sounds because we have 'friend'
access into the FrontendInputsAndOutputs structure, which means all
the helpers need to be declared in the header file. But it makes the
two use sites simpler, and does slightly less work in the cache hit
path.
The previous 'openModuleFiles' interface in SerializedModuleLoaderBase
still assumed that swiftmodule files and swiftdoc files would be found
next to each other, but that's not true anymore with
swiftinterfaces-built-to-modules. Give up on this assumption (and on
the minor optimization of passing down a scratch buffer) and split out
the interface into the customization point
'findModuleFilesInDirectory' and the implementation 'openModuleFiles'.
The latter now takes two full paths: one for the swiftmodule, one for
the swiftdoc.
Makes it easier to test the caching behavior, and may also be useful
for "prebuilding" swiftinterfaces in the future, or having the Driver
kick off a bunch of separate builds as proper tasks.
The goal here is to separate the parts that compute an output file
name from the parts that do the actual compilation, so that we can
test the swiftinterface -> swiftmodule behavior more directly. No
functionality change in this commit; the next will take advantage
of the refactoring.
Instead of creating multiple CodeBlockItemList nodes, that need to get merged and discarded later on, do this:
* Ensure for libSyntax parsing that we parse the whole file
* Create top-level CodeBlockItem nodes that we just directly wrap with a single CodeBlockItemList node at the end
The importance of this change will become more obvious later on when we'll decouple syntax parsing from the formation of libSyntax tree nodes.
This was a nice feature when people said "-swift-version 3.1"...
up until we got "-swift-version 4.2" as an actual valid version.
Just drop the special case.
https://bugs.swift.org/browse/SR-8850
<rdar://problem/46548531> Extend @available to support PackageDescription
This introduces a new private availability kind "_PackageDescription" to
allow availability testing by an arbitary version that can be passed
using a new command-line flag "-swiftpm-manifest-version". The semantics
are exactly same as Swift version specific availability. In longer term,
it maybe possible to remove this enhancement once there is
a language-level availability support for 3rd party libraries.
Motivation:
Swift packages are configured using a Package.swift manifest file. The
manifest file uses a library called PackageDescription, which contains
various settings that can be configured for a package. The new additions
in the PackageDescription APIs are gated behind a "tools version" that
every manifest must declare. This means, packages don't automatically
get access to the new APIs. They need to update their declared tools
version in order to use the new API. This is basically similar to the
minimum deployment target version we have for our OSes.
This gating is important for allowing packages to maintain backwards
compatibility. SwiftPM currently checks for API usages at runtime in
order to implement this gating. This works reasonably well but can lead
to a poor experience with features like code-completion and module
interface generation in IDEs and editors (that use sourcekit-lsp) as
SwiftPM has no control over these features.
Deinitializers are always @objc. (Arguably, this makes it unnecessary
to print, but we don't want to do any @objc inference at all in a
swiftinterface.)
- Use the name for the cached module, so that we don't end up with a
zillion "x86_64-XXXXXXXX.swiftmodule" files in the cache when we're
working with architecture-specific swiftmodules.
- Diagnose if the expected name is different from the name specified
in the swiftinterface.
- Emit all diagnostics at the location of the import, instead of
without any location at all.
When debugging Objective-C or C++ code on Darwin, the debug info
collected by dsymutil in the .dSYM bundle is entirely
self-contained. It is possible to debug a program, set breakpoints and
print variables even without having the complete original source code
or a matching SDK available. With Swift, this is currently not the
case. Even though .dSYM bundles contain the binary .swiftmodule for
all Swift modules, any Clang modules that the Swift modules depend on,
still need to be imported from source to even get basic LLDB
functionality to work. If ClangImporter fails to import a Clang
module, effectively the entire Swift module depending on it gets
poisoned.
This patch is addressing this issue by introducing a ModuleLoader that
can ask queries about Clang Decls to LLDB, since LLDB knows how to
reconstruct Clang decls from DWARF and clang -gmodules producxes full
debug info for Clang modules that is embedded into the .dSYM budle.
This initial version does not contain any advanced functionality at
all, it merely produces an empty ModuleDecl. Intertestingly, even this
is a considerable improvement over the status quo. LLDB can now print
Swift-only variables in modules with failing Clang depenecies, and
becuase of fallback mechanisms that were implemented earlier, it can
even display the contents of pure Objective-C objects that are
imported into Swift. C structs obviously don't work yet.
rdar://problem/36032653
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
This would break resilience, which makes a distinction between "SIL
only inside the module, which is inside the resilience domain" and
"SIL we're going to serialize, which is outside the resilience
domain".
Otherwise we've got a problem with modules that use -parse-stdlib but
aren't the stdlib themselves. Ideally we'd /only/ print this in that
case, but we don't have that information at this point in the pipeline
and I'm not sure it would be a good idea to include it in the set of
options we pass through.