For every struct type for which the frameworks provides an NSValue category for boxing and unboxing values of that type, provide an _ObjectiveCBridgeable conformance in the Swift overlay that bridges that struct to NSValue, allowing the structs to be used naturally with id-as-Any APIs and Cocoa container classes. This is mostly a matter of gyb-ing out boilerplate using `NSValue.init(bytes:objCType:)` to construct the instance, `NSValue.objCType` to check its type when casting, and `NSValue.getValue(_:)` to extract the unboxed value, though there are a number of special snowflake cases that need special accommodation:
- To maintain proper layering, CoreGraphics structs need to be bridged in the Foundation overlay.
- AVFoundation provides the NSValue boxing categories for structs owned by CoreMedia, but it does so using its own internal subclasses of NSValue, and these subclasses do not interop properly with the standard `NSValue` subclasses instantiated by Foundation. To do the right thing, we therefore have to let AVFoundation provide the bridging implementation for the CoreMedia types, and we have to use its category methods to do so.
- SceneKit provides NSValue categories to box and unbox SCNVector3, SCNVector4, and SCNMatrix4; however, the methods it provides do so in an unusual way. SCNVector3 and SCNVector4 are packaged into `CGRect`s and then the CGRect is boxed using `valueWithCGRect:`. SCNMatrix4 is copied into a CATransform3D, which is then boxed using `valueWithCATransform3D:` from CoreAnimation. To be consistent with what SceneKit does, use its category methods for these types as well, and when casting, check the type against the type encoding SceneKit uses rather than the type encoding of the expected type.
The SIL optimizer logic that determined feasability of dynamic casts
completely ignored tuple types, therefore assuming that they would
always fail. Check for structural identity, ignoring adding/removing
labels. Fixes rdar://problem/28121915.
Simplify e.g., ASTContext::getBridgedToObjC(), which no longer needs
the optional return.
Eliminate the now-unused constraint kind for checking bridging to
Objective-C.
One minor revision: this lifts the proposed restriction against
overriding a non-open method with an open one. On reflection,
that was inconsistent with the existing rule permitting non-public
methods to be overridden with public ones. The restriction on
subclassing a non-open class with an open class remains, and is
in fact consistent with the existing access rule.
'fileprivate' is considered a broader level of access than 'private',
but for now both of them are still available to the entire file. This
is intended as a migration aid.
One interesting fallout of the "access scope" model described in
758cf64 is that something declared 'private' at file scope is actually
treated as 'fileprivate' for diagnostic purposes. This is something
we can fix later, once the full model is in place. (It's not really
/wrong/ in that they have identical behavior, but diagnostics still
shouldn't refer to a type explicitly declared 'private' as
'fileprivate'.)
As a note, ValueDecl::getEffectiveAccess will always return 'FilePrivate'
rather than 'Private'; for purposes of optimization and code generation,
we should never try to distinguish these two cases.
This should have essentially no effect on code that's /not/ using
'fileprivate' other than altered diagnostics.
Progress on SE-0025 ('fileprivate' and 'private')
In many places, we're interested in whether a type with archetypes *might be* a superclass of another type with the right bindings, particularly in the optimizer. Provide a separate Type::isBindableToSuperclassOf method that performs this check. Use it in the devirtualizer to fix rdar://problem/24993618. Using it might unblock other places where the optimizer is conservative, but we can fix those separately.
Having a separate address and container value returned from alloc_stack is not really needed in SIL.
Even if they differ we have both addresses available during IRGen, because a dealloc_stack is always dominated by the corresponding alloc_stack in the same function.
Although this commit quite large, most changes are trivial. The largest non-trivial change is in IRGenSIL.
This commit is a NFC regarding the generated code. Even the generated SIL is the same (except removed #0, #1 and @local_storage).
This avoids us using reserved identifiers as the enum case names of all
our underscored protocols like _ObjectiveCBridgeable. I used the
convention PROTOCOL_WITH_NAME to mirror how the known identifiers work.
Swift SVN r32924
It fixes a compiler crash which occurs on the following code if Foundation is not imported:
class C {}
let x: Int = C() as! Int
The crash happened because Int was considered ObjC-bridgeable, but its ObjC counterpart was not known as Foundation was not imported.
Swift SVN r32594
Another step toward fixing rdar://problem/16238475, though Sema-level warnings still need to be suppressed, and container bridging still needs to be exercised.
Swift SVN r29962
checked_cast_br promises to maintain RC identity, but a cast from an ErrorType-conforming class to NSError may change the RC identity by bridging. Make sure that potential class-to-NSError casts go through the indirect cast entry points for now. The runtime implementation still needs to be fixed to handle the class-to-NSError case, but this is part of rdar://problem/21116814.
Swift SVN r29089
It looks like we don't know how to open-code the "is-a metatype" check
for scalar casts, so just tighten up canUseScalarCheckedCastInstructions()
so that if the target type is a metatype, the source also has to be a
metatype.
This fixes a regression from "SIL: Use scalar casts more".
Fixes <rdar://problem/21003923>.
Swift SVN r28729
Now that scalar casts work better, we can make the
canUseScalarCheckedCastInstructions() predicate a bit more
permissive.
This patch can be reverted if it is found that emitting scalar
casts in these additional cases introduces a regression.
Swift SVN r28713
Running the test quite with check-swift-optimize revealed that metatypes were not covered by the assert, even though it may occur in the real code.
Swift SVN r28297
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
DynamicCasts was not considering the fact that subclasses of a given class may implement a protocol, even if the class does not implement it.
Swift SVN r27265
The protocol_lookup the testcase from Interpreter test-cases exposed two bugs, once I tried to compiler with with -O:
- SILCloner was generating an open_existential_ref from an open_existential_metatype instruction during cloning even if the existential in question was not a class existential.
- DynamicCasts was not considering the fact that subclasses of a given class may implement a protocol, even if the class does not implement it.
Swift SVN r27260