The optimizations now handle the ref_tail_addr instructions for detecting element addresses
(in addition to the array semantics function _getElementAddress).
After _modify for Array subscript lands, we can get rid of _getElementAddress at all.
A few places around the compiler were checking for this module by its
name. The implementation still checks by name, but at least that only
has to occur in one place.
(Unfortunately I can't eliminate the string constant altogether,
because the implicit import for SwiftOnoneSupport happens by name.)
No functionality change.
I changed all of the places that used end_borrow_argument to use end_borrow.
NOTE: I discovered in the process of this patch that we are not verifying
guaranteed block arguments completely. I disabled the tests here that show this
bad behavior and am going to re-enable them with more tests in a separate PR.
This has not been a problem since SILGen does not emit any such arguments as
guaranteed today. But once I do the SILGenPattern work this will change.
rdar://33440767
SIL passes were violating the existing invariant on non-cond-br
critical edges in several places. I fixed the places that I could
find. Wherever there was a post-pass to "clean up" critical edges, I
replaced it with a a call to verification that the critical edges
aren't broken in the first place.
We still need to eliminate critical edges entirely before enabling
ownership SIL.
The client of this interface naturally expects to get back the
incoming phi value. Ignoring dominance and SIL ownership, the incoming
phi value and the block argument should be substitutable.
This method was actually returning the incoming operand for
checked_cast and switch_enum terminators, which is deeply misleading
and has been the source of bugs.
If the client wants to peek though casts, and enums, it should do so
explicitly. getSingleTerminatorOperand[s]() will do just that.
Previously, the EagerSpecializer pass would sometimes call a method on a null CanSpecializedGenericSignature. The method happened to never touch `this` if it was null, but UBSan still considers the call to be undefined behavior.
This change tests for the condition ahead of time and manually implements equivalent behavior without calling the method.
When the folded instructions are in an unreachable CFG loop, there may be loops in the use-def chain (there is no defined dominance order).
We have to handle this special case.
rdar://problem/43530134
This utility works by taking in a function_ref and then traverses the transitive
uses of the function_ref until it finds either a use it does not understand
"escape" or an "apply" instruction. It returns a result structure that contains
the final found applications and more importantly a bool telling the caller if
we found any "escaping" uses.
This is intended to be an inverse operation to ApplySite::getCalleeOrigin(). As
such it has a bunch of assertions in it that check that the two stay in sync.
rdar://41146023
The current inlining strategy doesn't support inlining coroutines
when there are multiple end_apply or abort_apply instructions in
the caller, so refuse to inline such cases. Also, handle the case
where there are no yield instructions in the callee, which can
happen if e.g. the callee calls a no-return function.
I also simplified the code somewhat by removing the vestiges of the
code that tried to unify control flow with switches.
As an unrelated fix, suppress function signature optimization for
coroutines for now.
In order to make this reasonable, I needed to shift responsibilities
around a little; the devirtualization operation is now responsible for
replacing uses of the original apply. I wanted to remove the
phase-separation completely, but there was optimization-remark code
relying on the old apply site not having been deleted yet.
The begin_apply aspects of this aren't testable independently of
replacing materializeForSet because coroutines are currently never
called indirectly.
- getAsDeclOrDeclExtensionContext -> getAsDecl
This is basically the same as a dyn_cast, so it should use a 'getAs'
name like TypeBase does.
- getAsNominalTypeOrNominalTypeExtensionContext -> getSelfNominalTypeDecl
- getAsClassOrClassExtensionContext -> getSelfClassDecl
- getAsEnumOrEnumExtensionContext -> getSelfEnumDecl
- getAsStructOrStructExtensionContext -> getSelfStructDecl
- getAsProtocolOrProtocolExtensionContext -> getSelfProtocolDecl
- getAsTypeOrTypeExtensionContext -> getSelfTypeDecl (private)
These do /not/ return some form of 'this'; instead, they get the
extended types when 'this' is an extension. They started off life with
'is' names, which makes sense, but changed to this at some point. The
names I went with match up with getSelfInterfaceType and
getSelfTypeInContext, even though strictly speaking they're closer to
what getDeclaredInterfaceType does. But it didn't seem right to claim
that an extension "declares" the ClassDecl here.
- getAsProtocolExtensionContext -> getExtendedProtocolDecl
Like the above, this didn't return the ExtensionDecl; it returned its
extended type.
This entire commit is a mechanical change: find-and-replace, followed
by manual reformatted but no code changes.
ConvertFunction and reabstraction thunks need this attribute. Otherwise,
there is no way to identify that withoutActuallyEscaping was used
to explicitly perform a conversion.
The destination of a [without_actually_escaping] conversion always has
an escaping function type. The source may have either an escaping or
@noescape function type. The conversion itself may be a nop, and there
is nothing distinctive about it. The thing that is special about these
conversions is that the source function type may have unboxed
captures. i.e. they have @inout_aliasable parameters. Exclusivity
requires that the compiler enforce a SIL data flow invariant that
nonescaping closures with unboxed captures can never be stored or
passed as an @escaping function argument. Adding this attribute allows
the compiler to enforce the invariant in general with an escape hatch
for withoutActuallyEscaping.
This works around a potential circular dependence issue where TypeSubstCloner
needs access to SILOptFunctionBuilder but is in libswiftSIL.
rdar://42301529
I am going to add the code in a bit that does the notifications. I tried to pass
down the builder instead of the pass manager. I also tried not to change the
formatting.
rdar://42301529
This patch adds SIL-level debug info support for variables whose
static type is rewritten by an optimizer transformation. When a
function is (generic-)specialized or inlined, the static types of
inlined variables my change as they are remapped into the generic
environment of the inlined call site. With this patch all inlined
SILDebugScopes that point to functions with a generic signature are
recursively rewritten to point to clones of the original function with
new unique mangled names. The new mangled names consist of the old
mangled names plus the new substituions, similar (or exactly,
respectively) to how generic specialization is handled.
On libSwiftCore.dylib (x86_64), this yields a 17% increase in unique
source vars and a ~24% increase in variables with a debug location.
rdar://problem/28859432
rdar://problem/34526036
This commit does not modify those APIs or their usage. It just:
1. Moves the APIs onto SILFunctionBuilder and makes SILFunctionBuilder a friend
of SILModule.
2. Hides the APIs on SILModule so all users need to use SILFunctionBuilder to
create/destroy functions.
I am doing this in order to allow for adding/removing function notifications to
be enforced via the type system in the SILOptimizer. In the process of finishing
off CallerAnalysis for FSO, I discovered that we were not doing this everywhere
we need to. After considering various other options such as:
1. Verifying after all passes that the notifications were sent correctly and
asserting. Turned out to be expensive.
2. Putting a callback in SILModule. This would add an unnecessary virtual call.
I realized that by using a builder we can:
1. Enforce that users of SILFunctionBuilder can only construct composed function
builders by making the composed function builder's friends of
SILFunctionBuilder (notice I did not use the word subclass, I am talking
about a pure composition).
2. Refactor a huge amount of code in SILOpt/SILGen that involve function
creation onto a SILGenFunctionBuilder/SILOptFunctionBuilder struct. Many of
the SILFunction creation code in question are straight up copies of each
other with small variations. A builder would be a great way to simplify that
code.
3. Reduce the size of SILModule.cpp by 25% from ~30k -> ~23k making the whole
file easier to read.
NOTE: In this commit, I do not hide the constructor of SILFunctionBuilder since
I have not created the derived builder structs yet. Once I have created those in
a subsequent commit, I will hide that constructor.
rdar://42301529
I made this change by removing the SILOption and then doing a compile, fix loop. I
purposely did not move around the code to make the refactoring really easy to
see.
At least most of these were latent bugs since the code was
unreachable in the PartialApply case. But that's no excuse to misuse
the API.
Also, whenever referring to an integer index, be explicit about
whether it is an applied argument or callee argument.
print and parse as a stable hexadecimal form that isn't interpreted as UTF8.
One use case is in representing serialized protobuf strings (as in the
tensorflow branch: f7ed452eba/lib/SILOptimizer/Mandatory/TFPartition.cpp (L3875)).
The original work was done by @lattner and merged into the tensorflow
branch. This PR is to upstream those changes.