We could introduce non-nominal-type context descriptors, such as those for opaque declarations,
which are also interesting to be able to look up for reflection or remote purposes. This should be
a backward compatible change with old runtimes, which always ignore any context descriptor kind
they don't know about.
In protocol extensions, and in the future parameterized extensions, have their own generic arguments
independent of an originating nominal type's formal generic parameters. Instead of crashing, handle
this gracefully. rdar://problem/50038754
This caused an issue where the runtime was unable to find subclasses of
resilient subclasses of NSObject until they were first registered by their
sugared name with NSClassFromString or were instantiated directly.
rdar://48892003
Extract common code from the old and new remangler into a common base class.
This lets the old remangler benefit from the changes I did recently in the new remangler.
Instead of capturing SubstGenericParametersFromMetadata and SubstGenericParametersFromWrittenArgs by value, capture by reference.
This avoids those instances to be copied and thus avoids a lot of mallocs.
SR-10028
rdar://problem/48575729
This dramatically reduces the number of needed malloc calls.
Unfortunately I had to add the implementation of SmallVectorBase::grow_pod to the runtime, as we don't link LLVM. This is a bad hack, but better than re-inventing a new SmallVector implementation.
SR-10028
rdar://problem/48575729
This is done by disallowing nodes with children to also have index or text payloads.
In some cases those payloads were not needed anyway, because the information can be derived later.
In other cases the fix was to insert an additional child node with the index/text payload.
Also, implement single or double children as "inline" children, which avoids needing a separate node vector for children.
All this reduces the needed size for node trees by over 2x.
Note that I've called out a couple of suspicious places where we
are requesting abstract metadata for superclasses but probably
need to be requesting something more complete.
MetadataLookup gives special treatment to imported Objective-C classes,
since there's no nominal type descriptor and metadata is obtained
directly by calling into the Objective-C runtime.
Remote reflection also gives special treatment to imported Objective-C
classes; they don't have field descriptors.
However, the ASTDemangler needs to treat them like ordinary classes,
in particular it wants to preserve the generic arguments here so that
we can round-trip debug info.
If we nest a type inside a local context inside a generic type,
we have to look through the local context(s) to find the outer
generic type when stripping off generic arguments.
We don't support nominal types inside generic local context
right now, but this can happen with type aliases.
Debug info uses a special mangling where type aliases can be
represented without being desugared; attempt to reconstruct
the TypeAliasType in this case.
We were creating a local Demangler instance, demangling a type name
using it, and then returning one of the resulting nodes to the caller.
Fixes rdar://problem/46817009.
This can be used by compiler-generated code as a size optimization for metadata access, using a
mangled name instead of possibly many open-coded metadata calls. It can also allow reflection
libraries outside of the standard library to turn type reference strings into in-process metadata
pointers in a robust way. rdar://problem/46451849
libobjc needs to look up classes by name. Some Swift classes, such as
instantiated generics and their subclasses, are created only on demand.
Now a by-name lookup from libobjc counts as a demand for those classes.
rdar://problem/27808571
Always use mangled type names to represent type metadata in keypath patterns.
For generic types, use the generic environment to pull substituted types
from the instantiation arguments.
Finishes the type metadata part of rdar://problem/38038799.
We should also allow references via manglings just to cover the
general case if we need it, but this is useful on its own so that
we can emit a reference to any natively-declared Swift type.
Rename the funnel points for demangling strings/nodes to metadata to
swift_getTypeByMangled(Name|Node) and make them overridable. This will let
us back-deploy mangling improvements and bug fixes.
Simplify the signature of the internal _getTypeByMangledName() used by the
standard library to what we actually (currently) use. Drop it as a
compatibility override, because it’s not a useful place to introduce
customization.
Clean up the interfaces used to go from a mangled name or demangle tree to
metadata. Parameterize these interfaces for generic parameter substitutions
(already in use) and dependent conformance substitutions (speculative).
TargetGenericParamRef is a specialized structure used to describe the
subject of a generic requirement, e.g., the “T.Assoc” in “T.Assoc: P”.
Replace it with a mangled name, for several reasons:
1) Mangled type names are also fairly concise, can often be shared, and
are a well-tested path
2) Mangled type names can express any type, which might be useful in the
future
3) This structure doesn’t accommodate specifically stating where the
conformances come from (to extract associated type witnesses). Neither
can mangled names, but we’d like to do that work in only one place.
This change exposed an existing bug where we improperly calculated the
generic parameter counts for extensions of nested generic types. Fix that
bug here (which broke an execution test).
The “old” mangling that is used for runtime names of @objc protocols
uses a simpler substitution scheme, so you can’t simply take a mangled
name from the new mangling and fix up the ends.
Fixes rdar://problem/45685649.
Right now we expect that every class and protocol has a field
descriptor that tells us if the entity is @objc or not.
For imported types, the descriptor will not exist if we did not
directly emit a field whose concrete type contains the imported
type. For example, in lldb, we might have a generic type whose
runtime substituted type includes an imported type.
In this case, TypeLowering would fail to produce a layout because
it did not find a field descriptor for the imported type.
A better approach is to have the TypeDecoder call a different
factory method for imported types, and handle them specially in
TypeLowering, bypassing the field type metadata altogether.
We were strangely excluding protocols from being symbolically referenced
in the any-generic-type production, which meant that we could not resolve
(e.g.) associated type references to private protocols at runtime. Allow
protocol symbolic references in this position, and cope with it in the
demangler.
Fixes the rest of rdar://problem/44977236.
Extending the mangling of symbolic references to also include indirect
symbolic references. This allows mangled names to refer to context
descriptors (both type and protocol) not in the current source file.
For now, only permit indirect symbolic references within the current module,
because remote mirrors (among other things) is unable to handle relocations.
Co-authored-by: Joe Groff <jgroff@apple.com>