When we use type(of: x) on a class in an ObjC bridged context, the optimizer turns this into a SIL `value_metatype @objc` operation, which is supposed to get the dynamic type of the object as an ObjC class. This was previously lowered by IRGen into a `object_getClass` call, which extracts the isa pointer from the object, but is inconsistent with the `-class` method in ObjC or with the Swift-native behavior, which both look through artificial subclasses, proxies, and so on. This inconsistency led to observably different behavior between debug and release builds and between ObjC-bridged and native entry points, so provide an alternative runtime entry point that replicates the behavior of getting a native Swift class. Fixes SR-7258.
lldb will use it to reimplement `language swift refcount <obj>`
which is currently not working. Asking the compiler allows us
to avoid maintinaing a bunch of information in the debugger which
are likely to change and break.
<rdar://problem/30538363>
The demangling tree for a symbolic reference doesn't indicate the generic context depth of the referenced type, so we have to form the type metadata from whole cloth without incrementally building up nested types as we do for concrete mangled types. Notice when DecodedMetadataBuilder is passed a context descriptor ref without a parent and directly form the entire type in this case. Fixes rdar://problem/38891999.
Type of elements contained by field offsets vector can be adjusted
to 32-bit integers (from being pointer sized) to safe space in the
binary since segment size is limited to 4 GB.
Resolves: rdar://problem/36560486
* SR-106: New floating-point `description` implementation
This replaces the current implementation of `description` and
`debugDescription` for the standard floating-point types with a new
formatting routine based on a variation of Florian Loitsch' Grisu2
algorithm with changes suggested by Andrysco, Jhala, and Lerner's 2016
paper describing Errol3.
Unlike the earlier code based on `sprintf` with a fixed number of
digits, this version always chooses the optimal number of digits. As
such, we can now use the exact same output for both `description` and
`debugDescription` (except of course that `debugDescription` provides
full detail for NaNs).
The implementation has been extensively commented; people familiar with
Grisu-style algorithms should find the code easy to understand.
This implementation is:
* Fast. It uses only fixed-width integer arithmetic and has constant
memory and time requirements.
* Simple. It is only a little more complex than Loitsch' original
implementation of Grisu2. The digit decomposition logic for double is
less than 300 lines of standard C (half of which is common arithmetic
support routines).
* Always Accurate. Converting the decimal form back to binary (using an
accurate algorithm such as Clinger's) will always yield exactly the
original binary value. For the IEEE 754 formats, the round-trip will
produce exactly the same bit pattern in memory. This is an essential
requirement for JSON serialization, debugging, and logging.
* Always Short. This always selects an accurate result with the minimum
number of decimal digits. (So that `1.0 / 10.0` will always print
`0.1`.)
* Always Close. Among all accurate, short results, this always chooses
the result that is closest to the exact floating-point value. (In case
of an exact tie, it rounds the last digit even.)
This resolves SR-106 and related issues that have complained
about the floating-point `description` properties being inexact.
* Remove duplicate infinity handling
* Use defined(__SIZEOF_INT128__) to detect uint128_t support
* Separate `extracting` the integer part from `clearing` the integer part
The previous code was unnecessarily obfuscated by the attempt to combine
these two operations.
* Use `UINT32_MAX` to mask off 32 bits of a larger integer
* Correct the expected NaN results for 32-bit i386
* Make the C++ exceptions here consistent
Adding a C source file somehow exposed an issue in an unrelated C++ file.
Thanks to Joe Groff for the fix.
* Rename SwiftDtoa to ".cpp"
Having a C file in stdlib/public/runtime causes strange
build failures on Linux in unrelated C++ files.
As a workaround, rename SwiftDtoa.c to .cpp to see
if that avoids the problems.
* Revert "Make the C++ exceptions here consistent"
This reverts commit 6cd5c20566.
I was going to put this off for awhile, but it turns out that a lot of
my testcases are enums with multi-payload cases, which we currently
compile as tuples, so they were all still hanging until this patch.
There are multiple reasons to do this. Primarily this is
useful as an optimization. Whenever analysis can determine that no
potentially conflicting access occurs within the scope, the access can
be demoted to "nontracking". It is also useful as an escape hatch for
future code deploying to older runtimes. For example, if a future access
scope may cross threads, and the older runtime doesn't know how to
migrate threads.
See <rdar://problem/37507434> add a flag to swift_beginAccess to inform
the runtime that an access might migrate between threads
I de-templated MetadataState and MetadataRequest because we weren't
relying on the template and because using the template was causing
conversion problems due to the inability to directly template an enum
in C++.
Rename it to swift_initClassMetadata() just like we recently did
swift_initStructMetadata(), and add a StructLayoutFlags parameter
so we can version calls to this function in the future.
Maybe at some point this will become a separate ClassLayoutFlags
type, but at this point it doesn't matter because IRGen always
passes a value of 0.