The allocation phase is guaranteed to succeed and just puts enough
of the structure together to make things work.
The completion phase does any component metadata lookups that are
necessary (for the superclass, fields, etc.) and performs layout;
it can fail and require restart.
Next up is to support this in the runtime; then we can start the
process of making metadata accessors actually allow incomplete
metadata to be fetched.
The layout changes to become relative-address based. For this to be
truly immutable (at least on Darwin), things like the RO data patterns
must be moved out of the pattern header. Additionally, compress the
pattern header so that we do not include metadata about patterns that
are not needed for the type.
Value metadata patterns just include the metadata kind and VWT.
The design here is meant to accomodate non-default instantiation
patterns should that become an interesting thing to support in the
future, e.g. for v-table specialization.
This can eventually be made more efficient by avoiding copies in all the
callees, but this is the minimal fix. Remove an unnecessary bit of
reverse-dependency on the Foundation overlay while we're here.
rdar://34222540
This is simpler, because the native form of that last argument is: a
pointer to a buffer (*) of pointers (*) to witness tables, which is
modelled as a buffer of void *s. Thus, void ***.
Change the "metadata base offset" variable into a "class metadata bounds"
variable that contains the base offset and the +/- bounds on the class.
Link this variable from the class descriptor when the class has a resilient
superclass; otherwise, store the +/- bounds there. Use this variable to
compute the immediate-members offset for various runtime queries. Teach the
runtime to fill it in lazily and remove the code to compute it from the
generated code for instantiation. Identify generic arguments with the start
of the immediate class metadata members / end of the {struct,enum} metadata
header and remove the generic-arguments offset from generic type descriptors.
Minimize the generic class metadata template by removing the
class header and base-class members. Add back the set of
information that's really required for instantiation.
Teach swift_allocateGenericClass how to allocate classes without
superclass metadata. Reorder generic initialization to establish
a stronger phase-ordering between allocation (the part that doesn't
really care about the generic arguments) and initialization (the
part that really does care about the generic arguments and therefore
might need to be delayed to handle metadata cycles).
A similar thing needs to happen for resilient class relocation.
Commit 0c42b57962 ("ELF: restructure image metadata registration")
removed the swift_install_in_component lines for both
swiftImageInspectionStatic and swiftImageInspectionShared libraries,
even though only the former library was removed in that change. As a
result, the swiftImageInspectionShared was not being built or
installed. This should fix SR-7038.
rdar://problem/37710244
Windows does not have `strndup` and `asprintf`. Provide equivalents in
terms of other available APIs. This enables us to build the standard
library for Windows again.
The runtime needs this method to initialize the type fields when loading
the images. This was added to the ELF side of the initialization path
but not the COFF side. It repairs the swiftCore.dll build for Windows.
This is yet another waypoint on the path towards the final
generic-metadata design. The immediate goal is to make the
pattern a private implementation detail and to give the runtime
more visibility into the allocation and caching of generic types.
The dumper method dumps:
1. The container's metadata pointer.
2. A pointer to the container's value.
3. Whether or not said value is stored inline in the container.
This provides a general overview that can be used even when working with SIL
code in the debugger by grabbing a pointer to swift Anys and then calling the
c++ any method upon them.
The verifier is intended to be used in conjunction with ASAN for maximum
effect to catch use-after-frees of existential boxes.
While implementing this I refactored some code from ExistentialTypeMetadata into
methods on OpaqueExistentialContainer. ExistentialTypeMetadata just calls these
methods now instead of implementing the code inline.
All of the information contained by this field (list of property names)
is already encoded as part of the field reflection metadata and
is accessible via `swift_getFieldAt` runtime method.