When the compiler fails to find an overload with suitable parameter or return types, it often attaches a note listing the available overloads so that users can find the one they meant to use. The overloads are currently ordered in a way that depends on the order they were declared, so swift-evolve would sometimes cause tests involving these diagnostics to fail.
This change emits the list in a textually-sorted order instead. The names were already being sorted as they were inserted into a std::set, so this shouldn’t significantly slow down the diagnostic.
Also add overloads for these operators to an extension of Array.
This allows us to typecheck array concatenation quickly with
designated type support enabled and the remaining type checker hacks
disabled.
This fixes two easy cases where we would go exponential in type
checking tuple literals.
Instead of generating a conversion to a single type variable (which
results in one large constraint system), we generate a conversion ot
the same type that appears in the initializer expression (which for
tuples is a tuple type, which naturally splits the constraint system).
I experimented with trying to generalize this further, but ran into
problems getting it working, so for now this will have to do.
Fixes rdar://problem/20233198.
Stop creating ImplicitlyUnwrappedOptional<T> so that we can remove it
from the type system.
Enable the code that generates disjunctions for Optional<T> and
rewrites expressions based on the original declared type being 'T!'.
Most of the changes supporting this were previously merged to master,
but some things were difficult to merge to master without actually
removing IUOs from the type system:
- Dynamic member lookup and dynamic subscripting
- Changes to ensure the bridging peephole still works
Past commits have attempted to retain as much fidelity with how we
were printing things as possible. There are some cases where we still
are not printing things the same way:
- In diagnostics we will print '?' rather than '!'
- Some SourceKit and Code Completion output where we print a Type
rather than Decl.
Things like module printing via swift-ide-test attempt to print '!'
any place that we now have Optional types that were declared as IUOs.
There are some diagnostics regressions related to the fact that we can
no longer "look through" IUOs. For the same reason some output and
functionality changes in Code Completion. I have an idea of how we can
restore these, and have opened a bug to investigate doing so.
There are some small source compatibility breaks that result from
this change:
- Results of dynamic lookup that are themselves declared IUO can in
rare circumstances be inferred differently. This shows up in
test/ClangImporter/objc_parse.swift, where we have
var optStr = obj.nsstringProperty
Rather than inferring optStr to be 'String!?', we now infer this to
be 'String??', which is in line with the expectations of SE-0054.
The fact that we were only inferring the outermost IUO to be an
Optional in Swift 4 was a result of the incomplete implementation of
SE-0054 as opposed to a particular design. This should rarely cause
problems since in the common-case of actually using the property rather
than just assigning it to a value with inferred type, we will behave
the same way.
- Overloading functions with inout parameters strictly by a difference
in optionality (i.e. Optional<T> vs. ImplicitlyUnwrappedOptional<T>)
will result in an error rather than the diagnostic that was added
in Swift 4.1.
- Any place where '!' was being used where it wasn't supposed to be
allowed by SE-0054 will now treat the '!' as if it were '?'.
Swift 4.1 generates warnings for these saying that putting '!'
in that location is deprecated. These locations include for example
typealiases or any place where '!' is nested in another type like
`Int!?` or `[Int!]`.
This commit effectively means ImplicitlyUnwrappedOptional<T> is no
longer part of the type system, although I haven't actually removed
all of the code dealing with it yet.
ImplicitlyUnwrappedOptional<T> is is dead, long live implicitly
unwrapped Optional<T>!
Resolves rdar://problem/33272674.
There are cases where disjunctions created for IUOs can be solved with
the Optional choice if a fix is applied. We do not want to stop with
this solution as we may be able to solve the constraint system without
a fix by selecting the non-Optional side.
I have opened a JIRA, SR-6626, to investigate one small regression in
diagnostics with this change.
* Nest various top-level Iterator and Index types, and flatten extensions.
* Fix tests from nesting iterator
* Nest Unsafe*BufferPointer.Iterator, extensionify UnsafeBufferPointer
* Degyb LazyCollection
* Nest Flatten iterator and index
This includes functions without type parameters that are generic
because they are members of a generic context. This addresses a
diagnostics regression because the '==' operators for Optional, Array,
and Dictionary were made into members.
The resulting error message is a little ugly, but is more informative
(and much shorter) than what we had before.
The etymology of these terms isn't about race, but "black" = "blocked"
and "white" = "allowed" isn't really a good look these days. In most
cases we weren't using these terms particularly precisely anyway, so
the rephrasing is actually an improvement.
Specialize and improve the "downcast only unwraps optionals"
diagnostic to provide specific diagnostics + Fix-Its for the various
casts of forced cast, conditional cast, and "isa" check. Specifically:
* With a forced cast, customize the diagnostic. We still insert the
appropriate number of !'s, but now we remove the 'as! T' (if an
implicit conversion would suffice) or replace the 'as!' with 'as'
(if we still need a bridge)
* With a conditional cast, only emit a diagnostic if we're removing
just one level of optional. In such cases, we either have a no-op
(an implicit conversion would do) or we could just use 'as' to the
optional type, so emit a customized warning to do that. If we are
removing more than one level of optional, don't complain:
conditional casts can remove optionals. Add the appropriate Fix-Its
here.
* With an 'is' expression, only emit a diagnostic if we're removing
just one level of optional. In this case, the 'is' check is
equivalent to '!= nil'. Add a Fix-It for that.
Across the board, reduce the error to a warning. These are
semantically-well-formed casts, it's just that they could be written
better.
Fixes rdar://problem/28856049 and rdar://problem/22275685.
For example, if someone tries to use the newly-generic type Cache,
from Foundation:
var cache = Cache()
they'll now get a fix-it to substitute the default generic parameters:
var cache = Cache<AnyObject, AnyObject>()
The rules for choosing this placeholder type are based on constraints
and won't be right 100% of the time, but they should be reasonable.
(In particular, constraints on associated types are ignored.)
In cases where there's no one concrete type that will work, an Xcode-
style placeholder is inserted instead.
- An unconstrained generic parameter defaults to 'Any'.
- A superclass-constrained parameter defaults to that class,
e.g. 'UIView'.
- A parameter constrained to a single @objc protocol (or to AnyObject)
defaults to that protocol, e.g. 'NSCoding'.
- Anything else gets a placeholder using the generic parameter's name
and protocol composition syntax.
rdar://problem/27087345
Emit a warning for optionals that are implicitly converted to Any, and
add fixits giving options to:
- Add '??' with a default value after
- Force-unwrap the optional with '!'
- Explicitly cast to 'as Any' to silence the warning
This covers diagnostics aspect of SE-0140.
rdar://problem/28196843
From the Swift documentation:
"If you define an optional variable without providing a default value,
the variable is automatically set to nil for you."
Simplify e.g., ASTContext::getBridgedToObjC(), which no longer needs
the optional return.
Eliminate the now-unused constraint kind for checking bridging to
Objective-C.
The id-as-Any work regressed cases where Swift code could specify
heterogeneous collection literals, e.g.,
var states: [String: Any] = [
"California": [
"population": 37_000_000,
"cities": ["Los Angeles", "San Diego", "San Jose"],
],
"Oregon": [
"population": 4_000_000,
"cities": ["Portland", "Salem", "Eugene"],
]
]
Prior to this, the code worked (when Foundation was imported) because
we'd end up with literals of type [NSObject : AnyObject].
The new defaulting rule says that the element type of an array literal
and the key/value types of a dictionary literal can be defaulted if no
stronger type can be inferred. The default type is:
Any, for the element type of an array literal or the value type of a
dictionary literal, or
AnyHashable, for the key type of a dictionary literal.
The latter is intended to compose with implicit conversions to
AnyHashable, so the most-general inferred dictionary type is
[AnyHashable : Any] and will work for any plausible dictionary
literal.
To prevent this inference from diluting types too greatly, we don't
allow this inference in "top-level" expressions, e.g.,
let d = ["a" : 1, "b" : "two"]
will produce an error because it's a heterogeneous dictionary literal
at the top level. One should annotate this with, e.g.,
let d = ["a" : 1, "b" : "two"] as [String : Any]
However, we do permit heterogeneous collections in nested positions,
to support cases like the original motivating example.
Fixes rdar://problem/27661580.
SE-0072 took implicit bridging conversions away, which regressed the ability to express NSDictionaries as dictionary literals and index them using literal keys. Address this by changing the signature of init(dictionaryLiteral:) to use Hashable and Any, and by replacing the subscript from Objective-C with one using _Hashable that does the bridging on the user's behalf. This largely restores the QoI of working with NS collections.
This reverts commit 6542100d62. SE-0116
expands Objective-C `id` to Swift `Any`, moving the conversion into the
bridging mechanism rather than the type system.
The reverts part of my previous patch. Removing the operators is too much of a
performance penalty to take. The difference is that the Strideable operators are
not transparent.
I still need to remove the UnsafeRawPointer operators, so -Onone performance
will be bad in some cases until this is fixed:
<rdar://problem/27513184> [perf] Strideable operators are not transparent. This is a huge -Onone performance penalty.
Generic versions of these functions are provided by Strideable.
This is required for SE-0107: UnsafeRawPointer. Otherwise, the presence
of non-generic operator overloads will conflict with existing operators
on String.
* Add UnsafeRawPointer type and API.
As proposed in SE-0107: UnsafeRawPointer.
https://github.com/apple/swift-evolution/blob/master/proposals/0107-unsaferawpointer.md
The fundamental difference between Unsafe[Mutable]RawPointer and
Unsafe[Mutable]Pointer<Pointee> is simply that the former is used for "untyped"
memory access, and the later is used for "typed" memory access. Let's refer to
these as "raw pointers" and "typed pointers". Because operations on raw pointers
access untyped memory, the compiler cannot make assumptions about the underlying
type of memory and must be conservative. With operations on typed pointers, the
compiler may make strict assumptions about the type of the underlying memory,
which allows more aggressive optimization.
Memory can only be accessed by a typed pointer when it is currently
bound to the Pointee type. Memory can be bound to type `T` via:
- `UnsafePointer<T>.allocate(capacity: n)`
- `UnsafePointer<Pointee>.withMemoryRebound(to: T.self, capacity: n) {...}`
- `UnsafeMutableRawPointer.initializeMemory(as: T.self, at: i, count: n, to: x)`
- `UnsafeMutableRawPointer.initializeMemory(as: T.self, from: p, count: n)`
- `UnsafeMutableRawPointer.moveInitializeMemory(as: T.self, from: p, count: n)`
- `UnsafeMutableRawPointer.bindMemory(to: T.self, capacity: n)`
Mangle UnsafeRawPointer as predefined substitution 'Sv' for Swift void
pointer ([urp] are taken).
* UnsafeRawPointer minor improvements.
Incorporate Dmitri's feedback.
Properly use a _memmove helper.
Add load/storeBytes alignment precondition checks.
Reword comments.
Demangler tests.
* Fix name mangling test cases.
* Fix bind_memory specialization.