change includes both the necessary protocol updates and the deprecation
warnings
suitable for migration. A future patch will remove the renamings and
make this
a hard error.
ones, look through any lvalue types. Doing so can
prevent improper double-optional binds, which can
cause unexpected runtime behavior.
(rdar://problem/26360502)
This is a squash of the following commits:
* [SE-0054] Import function pointer arg, return types, typedefs as optional
IUOs are only allowed on function decl arguments and return types, so
don't import typedefs or function pointer args or return types as IUO.
* [SE-0054] Only allow IUOs in function arg and result type.
When validating a TypeRepr, raise a diagnostic if an IUO is found
anywhere other thn the top level or as a function parameter or return
tpye.
* [SE-0054] Disable inference of IUOs by default
When considering a constraint of the form '$T1 is convertible to T!',
generate potential bindings 'T' and 'T?' for $T1, but not 'T!'. This
prevents variables without explicit type information from ending up with
IUO type. It also prevents implicit instantiation of functions and types
with IUO type arguments.
* [SE-0054] Remove the -disable-infer-iuos flag.
* Add nonnull annotations to ObjectiveCTests.h in benchmark suite.
as well as on parameter decls. Also, tighten up the type checker to look at
parameter types instead of decl attributes in some cases (exposing a type
checker bug).
Still TODO:
- Reject autoclosure/noescape on non-parameter types.
- Move stdlib and other code to use noescape and autoclosure in the right
spot.
- Warn about autoclosure/noescape on parameters decls, with a fixit to move it.
- Upgrade the warning to an error.
If this option is enabled, when generating potential bindings for a type
variable, don't propagate IUO type. Instead try the optional type and
the underlying type. This way, untyped bindings will not be given IUO
type when they are initialized with exprs of IUO type.
Note that the typecheck perf for these kinds of expressions still isn't fantastic, but at least they're now computationally feasible. I have further improvements planned for this area which should bring performance in line with expectations.
a constraint system in "allowFreeTypeVariables" mode. Previously, we
only allowed a few specific constraints, now we allow any relational and
member constraints. The later one is a big deal because it means that we
can allow ".Foo" expressions as ambiguous solutions, which CSDiags can
handle well.
This unblocks solving 23942743 and enables some minor improvements across
the board, including diagnosing things like this better:
Optional(.none) // now: generic parameter 'T' could not be inferred
That said, it also just permutes some non-awesome diagnostics.
This is a really nasty problem where we'd explode trying to unify type variables
we found in the constraint graph, that didn't exist in the constraint system. This
happened because diagnostic generation is simplifying the system in
"ContinueAfterFailures" mode to try to get to a minimal system (to avoid
producing an error message about trivially solvable constraints that only
exist due to the solver stopping early) and in this mode we would see an
erroneous constraint, remove it from the constraint system, but not the
constraint graph. This only mattered in ContinueAfterFailures.
As with many things, the fix is pretty simple once the onion is peeled enough
to find the stinky part lurking inside.
Introduce a new constraint kind, BindParam, which relates the type of a
function parameter to the type of a reference to it from within the
function body. If the param type is an inout type, the ref type is an
lvalue type with the same underlying object type; otherwise the two
types must be the same. This prevents DeclRefExprs from being inferred
to have inout type in some cases.
<rdar://problem/15998821> Fail to infer types for closure that takes an inout argument
Swift SVN r32183
bindings only bound the type variable from above with existential types.
<rdar://problem/22459135> error: 'print' is unavailable: Please wrap your tuple argument in parentheses: 'print((...))'
Swift SVN r31953
the regressions that r31105 introduced in the validation tests, as well as fixing a number
of other validation tests as well.
Introduce a new UnresolvedType to the type system, and have CSDiags start to use it
as a way to get more type information out of incorrect subexpressions. UnresolvedType
generally just propagates around the type system like a type variable:
- it magically conforms to all protocols
- it CSGens as an unconstrained type variable.
- it ASTPrints as _, just like a type variable.
The major difference is that UnresolvedType can be used outside the context of a
ConstraintSystem, which is useful for CSGen since it sets up several of them to
diagnose subexpressions w.r.t. their types.
For now, our use of this is extremely limited: when a closureexpr has no contextual
type available and its parameters are invalid, we wipe them out with UnresolvedType
(instead of the previous nulltype dance) to get ambiguities later on.
We also introduce a new FreeTypeVariableBinding::UnresolvedType approach for
constraint solving (and use this only in one place in CSDiags so far, to resolve
the callee of a CallExpr) which solves a system and rewrites any leftover type
variables as UnresolvedTypes. This allows us to get more precise information out,
for example, diagnosing:
func r22162441(lines: [String]) {
lines.map { line in line.fooBar() }
}
with: value of type 'String' has no member 'fooBar'
instead of: type of expression is ambiguous without more context
This improves a number of other diagnostics as well, but is just the infrastructural
stepping stone for greater things.
Swift SVN r31130
as a way to get more type information out of incorrect subexpressions. UnresolvedType
generally just propagates around the type system like a type variable:
- it magically conforms to all protocols
- it CSGens as an unconstrained type variable.
- it ASTPrints as _, just like a type variable.
The major difference is that UnresolvedType can be used outside the context of a
ConstraintSystem, which is useful for CSGen since it sets up several of them to
diagnose subexpressions w.r.t. their types.
For now, our use of this is extremely limited: when a closureexpr has no contextual
type available and its parameters are invalid, we wipe them out with UnresolvedType
(instead of the previous nulltype dance) to get ambiguities later on.
We also introduce a new FreeTypeVariableBinding::UnresolvedType approach for
constraint solving (and use this only in one place in CSDiags so far, to resolve
the callee of a CallExpr) which solves a system and rewrites any leftover type
variables as UnresolvedTypes. This allows us to get more precise information out,
for example, diagnosing:
func r22162441(lines: [String]) {
lines.map { line in line.fooBar() }
}
with: value of type 'String' has no member 'fooBar'
instead of: type of expression is ambiguous without more context
This improves a number of other diagnostics as well, but is just the infrastructural
stepping stone for greater things.
Swift SVN r31105
and use it in the diagnostics path (only!) to revisit active constraints that
are left in the system after a failure is found. This improves a number of
otherwise sad diagnostics in the testsuite and resolves rdar://22083115.
The one QoI regression (in throwing_functions.swift) is now tracked by 22158167.
Swift SVN r31027
machinery, instead of in multiple places in CSSolver and CSDiags. This leads
to more predictable behavior (e.g. by removing the UnboundGenericParameter
failure kind) and eliminates a class of "'_' is not convertible to 'FooType'"
diagnostics.
Swift SVN r30923
r30787 causes our tests to time out; the other commits depend on r30787.
Revert "revert part of my previous patch."
Revert "Produce more specific diagnostics relating to different kinds of invalid"
Revert "add a testcase, nfc"
Revert "- Reimplement FailureDiagnosis::diagnoseGeneralMemberFailure in terms of"
Revert "Fix places in the constraint solver where it would give up once a single "
Swift SVN r30805
constraint failed, leaving a bunch of other solvable constraints laying
around in the system as inactive.
This is a problem for diagnostics emission, because it turns around and
reaches into the constraint system for some inactive constraint, assuming
that anything left could not be solved. The constraint system attempted to
solve this by taking the first failure and putting it into the failedConstraint
with the intention of driving diagnostics, but just because it happened to fail
first in constraint-solver-worklist-order doesn't mean it is the most pertinent
one to diagnose.
Swift SVN r30787
with no returns *must* be (), add a defaulting constraint
so that it will be inferred as () in the absence of
other possibilities.
The chief benefit here is that it allows better QoI when
the user simply hasn't yet written the return statement.
Doing this does regress a corner case where an attempt
to recover from an uncalled function leads to the
type-checker inferring a result for a closure that
doesn't make any sense at all.
Swift SVN r30476
which allows solving of a constraint system to succeed without emitting
errors in the face of ambiguous solutions. This is important for CSDiag
because it is in the business of trying to solve subexpressions of a global
expression - and it wants to know the difference between a subexpression
that is inherently impossible to solve, vs one that is simply ambiguous
because its context has been removed.
Use this in CSDiag's typeCheckChildIndependently() to provide it an
extra flag that enables this behavior. This is currently unused, so NFC
with this patch.
Swift SVN r30402
ConstraintSystem::dump to ConstraintSystem::print for
consistency with other parts of the compiler. Enhance
CS::print to print the ID # of a Type Variable, so you
don't have to count them to realize that you're looking
at typevar #13
Swift SVN r27874
To use members of protocol extensions on existential types, we
introduce an OpenExistentialExpr expression to open up the existential
type (into a local archetype) and perform the operations on that local
archetype.
Unlike with uses of initializers or dynamic-Self-producing
methods of protocols, which produce similar ASTs, we have the type
checker perform the "open" operation and then track it through
constraint application. This scheme is better (because it's more
direct), but it's still using a simplistic approach to deciding where
the actual OpenExistentialExpr goes that needs improvement.
Swift SVN r26964
Previously some parts of the compiler referred to them as "fields",
and most referred to them as "elements". Use the more generic 'elements'
nomenclature because that's what we refer to other things in the compiler
(e.g. the elements of a bracestmt).
At the same time, make the API better by providing "getElement" consistently
and using it, instead of getElements()[i].
NFC.
Swift SVN r26894
Previously, we were reconstructing this mapping from the "full" opened
type produced by declaration references. However, when dealing with
same-type constraints between associated types and type parameters, we
could end up with an incomplete mapping, which let archetypes slip
through. Most of the churn here is sorting out the locators we need to
use to find the opened-type information. Fixes rdar://problem/18208283
and at least 3 dupes of it that I've found so far.
Swift SVN r25375
Require 'as' when converting from Objective-C type to native type (but
continue to allow implicit conversion from native to Objective-C). This
conversion constraint is called ExplicitConversion; all implicit
conversions are covered by the existing Conversion constraint. Update
standard library and tests to match.
Swift SVN r24496
Specifically, it's not when
- the conformance is being used within a function body (test included)
- the conformance is being used for or within a private type (test included)
- the conformance is being used to generate a diagnostic string
We're still a bit imprecise in some places (checking ObjC bridging), but
in general this means less of an issue for checking literals.
Swift SVN r23700
Trying a collection literal early often means that we can determine
the element type from context, which saves us the work of trying to
guess at the element type firsthand.
Doing this seems to help some cases significantly:
- test/stdlib/ArrayNew.swift got about 20% faster in a release build
- I had to drop the threshold for the "expression too complex" test
case by 20x to still trigger the issue.
Swift SVN r22097
t2.swift:3:1: error: argument for generic parameter 'U' could not be
inferred
f(i)
^
t2.swift:2:6: note: in call to function 'f'
func f<T, U>(t: T) -> U? { return nil }
^
Our lack of decent locator information means that we don't get notes
in all of the cases we want them. I'll look at that separately.
Swift SVN r21921
Locators that refer to opened type parameters now carry information
about the source location where we needed to open the type, so that
(for example) we can trace an opened type parameter back to the
location it was opened. As part of this, eliminate the "rootExpr"
fallback, because we're threading constraint locators everywhere.
This is infrastructural, and should be NFC.
Swift SVN r21919