This makes ManagedBuffer available and usable in Embedded Swift, by:
- Removing an internal consistency check from ManagedBuffer that relies on metatypes.
- Making the .create() API transparent (to hoist the metatype to the callee).
- Adding a AllocRefDynamicInst simplification to convert `alloc_ref_dynamic` to `alloc_ref`, which removes a metatype use.
- Adding tests for the above.
I accidentally copy and pasted the mangled symbol names in the wrong order, so existing callers got directed to the wrong entry points, and things got terribly, terribly wrong.
(We badly need a sensible replacement for these `@_silgen_name` hacks.)
Huge thanks to @edymtt for spotting this!
rdar://127016847
This isn't a "complete" port of the standard library for embedded Swift, but
something that should serve as a starting point for further iterations on the
stdlib.
- General CMake logic for building a library as ".swiftmodule only" (ONLY_SWIFTMODULE).
- CMake logic in stdlib/public/core/CMakeLists.txt to start building the embedded stdlib for a handful of hardcoded target triples.
- Lots of annotations throughout the standard library to make types, functions, protocols unavailable in embedded Swift (@_unavailableInEmbedded).
- Mainly this is about stdlib functionality that relies on existentials, type erasure, metatypes, reflection, string interpolations.
- We rely on function body removal of unavailable functions to eliminate the actual problematic SIL code (existentials).
- Many .swift files are not included in the compilation of embedded stdlib at all, to simplify the scope of the annotations.
- EmbeddedStubs.swift is used to stub out (as unavailable and fatalError'd) the missing functionality.
On OpenBSD, malloc introspection (e.g., malloc_usable_size or
malloc_size) is not provided by the platform allocator. Since allocator
introspection is currently a load-bearing piece of functionality for
ManagedBuffer and ManagedBufferPointer, pending any API changes, as a
stopgap measure, this commit marks methods in ManagedBuffer and
ManagedBufferPointer calling _swift_stdlib_malloc_size and methods
dependent thereon unavailable on OpenBSD.
This may induce some compatibility issues for some files, but at least
this change ensures that we can get stdlib to build on this platform
until the evolution process addresses this problem more thoroughly.
- HeapBuffer was at the wrong abstraction level, for no good reason. We have ManagedBuffer for the general case; we don’t need a slightly less general variant of it.
- Current usages of HeapBuffer are hyper specific: they all are flat buffers of AnyObjects, facilitating bridging. It makes sense to dedicate _HeapBuffer for this single usecase.
- Introduce a dedicate ManagedBuffer subclass for bridging buffers. This will make it slightly easier to recognize these in heap dumps.
- Inlinability audit.
The functions in LibcShims are used externally, some directly and some through @inlineable functions. These are changed to SWIFT_RUNTIME_STDLIB_SPI to better match their actual usage. Their names are also changed to add "_swift" to the front to match our naming conventions.
Three functions from SwiftObject.mm are changed to SPI and get a _swift prefix.
A few other support functions are also changed to SPI. They already had a prefix and look like they were meant to be SPI anyway. It was just hard to notice any mixup when they were #defined to the same thing.
rdar://problem/35863717
- Revise Equatable and Hashable for synthesized requirements
- Complete Strideable and stride(from:...:by:) documentation
- Revise DoubleWidth type docs
- Add complexity notes for Set.index(of:) and .contains(_:)
- Fix typos in Set.formUnion docs
- Add missing axioms for SetAlgebra (SR-6319)
- Improve guidance for description and debugDescription
- Add note about the result of passing duplicate keys to
Dictionary(uniqueKeysWithValues:)
- Fix typo in BinaryInteger docs
- Update Substring docs with better conversion example
- Improve docs for withMemoryRebound and isKnownUniquelyReferenced
- Add missing docs not propagated from protocols
Previously often times when casting a value, we would just pass along the
cleanup of the uncasted value. With semantic SIL this is no longer correct since
the cleanup now needs to be on the cast result.
This caused problems for certain usages of Builtin.castToNativeObject(...) by
the stdlib. Specifically, the stdlib was using this on AnyObject values that
were not necessarily native. Since we were recreating the cleanup on the native
value, a swift native release was being used =><=.
In this commit I solve this problem by:
1. Adding an assert in Builtin.castToNativeObject(...) that ensures that any value
passed to Builtin.castToNativeObject() is known conservatively to use swift
native reference counting.
2. I changed all uses where we do not have a precondition of a native ref
counting type to use Builtin.castToUnknownObject(...).
3. I added a new Builtin called Builtin.unsafeCastToNativeObject(...) that does
not have the compile time check. I used this to rewrite callsites in the stdlib
where we know via preconditions that an AnyObject will dynamically always be
native.
rdar://29791263