Filter name for completion item is always used. Also, for cached items,
they are used multiple times for filtering. So precomputing and caching
it improves performance.
rdar://84036006
Convert 'ContextFreeCodeCompletionResult' constructor overloads to
'create()' factory methods. This is the consistent interface with
'CodeCompletionString'. NFC
[CodeCompletion] Make ExpectedTypeContext a class with explicit getters/setters
This simplifies debugging because you can break when the possible types are set and you can also search for references to `setPossibleType` to figure out where the expected types are being set.
The distributed case is distinguishable from the non-distributed case
based on the actor type itself for those rare cases where we care. The
vast majority of code is simplified by treating this identically to
`ActorInstance`.
This allows makes the distinction between cachable and non-cachable properties cleaner and allows us to more easily compute contextual information (like type relations) for cached items later.
Opened archetypes can be created in the constraint system, and the
existential type it wraps can contain type variables. This can happen
when the existential type is inferred through a typealias inside a
generic type, and a member reference whose base is the opened existential
gets bound before binding the generic arguments of the parent type.
However, simplifying opened archetypes to replace type variables is
not yet supported, which leads to type variables escaping the constraint
system. We can support cases where the underlying existential type doesn't
depend on the type variables by canonicalizing it when opening the
existential. Cases where the underlying type requires resolved generic
arguments are still unsupported for now.
Previously the code completion methods just returned an `ArrayRef` that pointed into the result sink that contained the results but no effort was made to actually keep that that result sink alive, e.g. when transforming results in `transformAndForwardResults`.
Instead, return the `CodeCompletionResultSink` from the code compleiton methods now and adopt that sink from the inner results created in `transformAndForwardResults`.
Now that arguments are marked up with whether they have a default or
not, clients may not need the extra call (that has no default
arguments). Add an option to allow not adding this item.
Resolves rdar://85526214.
"add inits to toplevel" and "call pattern heuristics" are only used in
code completion. Move them from LangOptions to CodeCompletionContext so
that they don't affect compiler arguments.
* "description" for override completion is now annotatable
* "description" doesn't include attributes and decl introducer, but it
includes generic paramters, effects specifiers, result type clause,
and generic where clauses
* "name" now only include the name and the parameter names
* "sourcetext" should be the same
rdar://63835352
Pattern matching in Swift can either be expression pattern matching by comparing two instances using the `~=` operator or using enum matching by matching the enum case and its associated types (+ tuple pattern matching, but that’s not relevant here). We currenlty only consider the expression pattern matching case for code completion. To provide enum pattern matching results, we thus need to have a `~=` operator between the code completion token and the match expression
For example, when we are completing
```swift
enum MyEnum {
case myCase(String)
}
switch x {
case .#^COMPLETE^#
}
```
then we are looking up all overloads of `~=` and try to match it to the call arguments `(<Code Completion Type>, MyEnum)`.
The way we currently get `#^COMPLETE^#` to offer members of `MyEnum`, is that we are trying to make sure that the `~=<T: Equatable>(T, T)` operator defined in the standard library is the best solution even though it has fixes associated with it. For that we need to carefully make sure to ignore other, more favourable overloads of `~=` in `filterSolutions` so that `~=<T: Equatable>(T, T)` has the best score.
This poses several problems:
- If the user defines a custom overload of `~=` that we don't prune when filtering solutions (e.g. `func ~=(pattern: OtherType, value: MyEnum) -> Bool`), it gets a better score than `~=<T: Equatable>(T, T)` and thus we only offer members of `OtherType` instead of members from `MyEnum`
- We are also suggesting static members of `MyEnum`, even though we can't pattern match them due to the lack of the `~=` operator.
If we detect that the completion expression is in a pattern matching position, also suggests all enum members of the matched type. This allows us to remove the hack which deliberately ignores certain overloads of `~=` since we no longer rely on `~=<T: Equatable>(T, T)`. It thus provides correct results in both of the above cases.
Fixes rdar://77263334 [SR-14547]