symbolic values, which are used to represent constant struct and tuple
instances. Associating those symbolic values with the types of the
aggregate they are representing will allow writing some sanity checks,
and will also make constant folding of the symbolic values easier and
more robust.
of OSLogMessage constant evaluable and remove @_transparent annotation
from the methods. Also, improve diagnostics in the OSLogOptimization
pass as now it rely on seeing the appendInterpolation/Literal calls.
add -enable-ownership-stripping-after-serialization flag to OSLog optimization tests,
and update the folding logic and end-of-use discovery logic to handle ownership
and non-ownership SIL.
`cdecl` is a keyword in the non-conforming C++ dialect used on Windows
which expands to `__cdecl`. Simply rename the variable to avoid the
replacement. Although it is possible to `#undef cdecl`, renaming makes
it less confusing for non-Windows developers.
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
discovering the beginning of the string interpolation passed
to os log APIs.
The implementation follows the chain of dependencies starting
from an initializer call to OSLogMessage until the first
instruction of interpolation is discovered. This is more
robust towards changes to the SIL generation of string
interpolation literals.
evaluator to precisely evaluate Builtin.assert_configuration.
Unify UnknownReason::Trap and UnknownReason::AssertionFailure error
values in the constant evaluator, now that we have 'condfail_message'
SIL instruction, which provides an error message for the traps.
@_semantics("constant_evaluable") annotation to denote constant
evaluable functions.
Add a test suite that uses the sil-opt pass ConstantEvaluableSubsetChecker.cpp
to check the constant evaluability of function in the OSLog
overlay.
the builtin.globalStringTablePointer to the new OSLog overlay.
Modify the new OSLog implementation to use this SPI instead of
`withCString` to pass the (compiler-generated) format string to
the C os_log_impl ABI.
Move the OSLogOptimization pass before constant propagation in
the pass pipeline so that the SPI and the builtin it uses can be
folded to a string_literal instruction.
Update OSLogTests to work with the changes in the implementation.
With the advent of dynamic_function_ref the actual callee of such a ref
my vary. Optimizations should not assume to know the content of a
function referenced by dynamic_function_ref. Introduce
getReferencedFunctionOrNull which will return null for such function
refs. And getInitialReferencedFunction to return the referenced
function.
Use as appropriate.
rdar://50959798
Fixes the following warning:
```console
third_party/unsupported_toolchains/swift/src/swift/lib/SILOptimizer/Mandatory/OSLogOptimization.cpp:396:1: warning: control may reach end of non-void function [-Wreturn-type]
}
^
```