Use malloc/free for allocating/freeing SIL instructions instead of using the BumpPtrAllocator. This allows for memory reuse and significantly reduces the memory footprint of the compiler.
For example, a peak memory usage during a compilation of the standard library and StdlibUnitTest is reduced by 25%-30%. The performance of the compiler seems to be not affected by this change, i.e. no slowdown is measured.
The use-after-free issue reported by build bots is fixed now.
rdar://23303031
Use malloc/free for allocating/freeing SIL instructions instead of using the BumpPtrAllocator. This allows for memory reuse and significantly reduces the memory footprint of the compiler.
For example, a peak memory usage during a compilation of the standard library and StdlibUnitTest is reduced by 25%-30%. The performance of the compiler seems to be not affected by this change, i.e. no slowdown is measured.
rdar://23303031
Refines the results of getReleasingBehavior() by checking the
consumption kind of UnconditionalCheckedCastAddrInst and
CheckedCastAddrBranchInst, as well as whether a CopyAddrInst is an
initialization.
This will be used in call graph construction so that we can model calls
to deinits that are potentially called as a result of executing
instructions that can end up releasing memory.
We need a SIL level unsafe cast that supports arbitrary usage of
UnsafePointer, generalizes Builtin.reinterpretCast, and has the same
semantics on generic vs. nongeneric code. In other words, we need to
be able to promote the cast of an address type to the cast of an
object type without changing semantics, and that cast needs to support
types that are not layout identical.
This patch introduces an unchecked_bitwise_cast instruction for that
purpose. It is different from unsafe_addr_cast, which has been our
fall-back "unknown" cast in the past. With unchecked_bitwise_cast we
cannot assume layout or RC identity. The cast implies a store and
reload of the value to obtain the low order bytes. I know that
bit_cast is just an abbreviation for bitwise_cast, but we use
"bitcast" throught to imply copying a same sized value. No one could
come up with a better name for copying an objects low bytes via:
@addr = alloca $wideTy
store @addr, $wideTy
load @addr, $narrowTy
Followup patches will optimize unchecked_bitwise_cast into more
semantically useful unchecked casts when enough type information is
present. This way, the optimizer will rarely need to be taught about
the bitwise case.
Swift SVN r29510
Still no implementation yet; we'll need to renovate how boxes work a bit to make them projectable (and renovate SILGen to generate typed boxes for the insn to be useful).
Swift SVN r29490
This reverts commit r29475 because it conflicts with reverting r29474,
and it looks like that commit is breaking the build of the SpriteKit
overlay.
Swift SVN r29481
Still no implementation yet; we'll need to renovate how boxes work a bit to make them projectable (and renovate SILGen to generate typed boxes for the insn to be useful).
Swift SVN r29475
reference to something of class type. This is required to model
RebindSelfInConstructorExpr correctly to DI, since in the class case,
self.init and super.init *take* a value out of class box so that it
can pass the +1 value without performing an extra retain. Nothing
else in the compiler uninitializes a DI-controlled memory object
like this, so nothing else needs this. DI really doesn't like something
going from initialized to uninitialized.
Yes, I feel super-gross about this and am really unhappy about it. I
may end up reverting this if I can find an alternate solution to this
problem.
Swift SVN r27525
We no longer need or use it since we can always refer to the same bit on
the applied function when deciding whether to inline during mandatory
inlining.
Resolves rdar://problem/19478366.
Swift SVN r26534
For better consistency with other address-only instruction variants, and to open the door to new exciting existential representations (such as a refcounted boxed representation for ErrorType).
Swift SVN r25902
storage for arbitrary values.
A buffer doesn't provide any way to identify the type of
value it stores, and so it cannot be copied, moved, or
destroyed independently; thus it's not available as a
first-class type in Swift, which is why I've labelled
it Unsafe. But it does allow an efficient means of
opaquely preserving information between two cooperating
functions. This will be useful for the adjustments I
need to make to materializeForSet to support safe
addressors.
I considered making this a SIL type category instead,
like $@value_buffer T. This is an attractive idea because
it's generally better-typed. The disadvantages are that:
- it would need its own address_to_pointer equivalents and
- alloc_stack doesn't know what type will be stored in
any particular buffer, so there still needs to be
something opaque.
This representation is a bit gross, but it'll do.
Swift SVN r23903
It avoids generation of llvm phi nodes with identical predecessors and differing values.
This change replaces my previous fix of this problem in r23580, where I handled it in IRGen.
There were some discussions about it with the conclusion that it's better to just disallow such cond_br instructions in SIL.
It makes the life easier for some SIL optimizations which can't deal with cond_br with identical destinations.
The original radar is <rdar://problem/18568272> Swift compiler fails with "PHI node has multiple entries for the same basic block with different incoming values!"
Swift SVN r23861
Using the intrinsics is obnoxious because I needed them
to return Builtin.NativeObject?, but there's no reasonable
way to safely generate optional types from Builtins.cpp.
Ugh.
Dave and I also decided that there's no need for
swift_tryPin to allow a null object.
Swift SVN r23824
And fix some bugs with existential conformances, where we were creating a bogus conformance instead of just using null conformances like other code expects.
Swift SVN r23461
Before this patch there was no dependence visible to the optimizer between a
open_existential and the witness_method allowing the optimizer to reorder the
two instruction. The dependence was implicit in the opened archetype but this
is not a concept model by the SIL optimizer.
%2 = open_existential %0 : $*FooProto to $*@opened("...") FooProto
%3 = witness_method $@opened("...") FooProto,
#FooProto.bar!1 : $@cc(...)
%4 = apply %3<...>(%2)
This patch changes the SIL representation such that witness_methods on opened
archetypes take the open_existential (or the producer of the opened existential)
as an operand preventing the optimizer from reordering them.
%2 = open_existential %0 : $*FooProto to $*@opened("...") FooProto
%3 = witness_method $@opened("...") FooProto,
#FooProto.bar!1,
%2 : $*@opened("...") FooProto : $@cc(...)
%4 = apply %3<...>(%2)
rdar://18984526
Swift SVN r23438
Note that I did not change any actual memory behavior. That will come via a
later cleanup phase. Since this is a correctness fix I wanted to only make
things more conservative.
rdar://18568601
Swift SVN r23311