And use project_box to get to the address value.
SILGen now generates a project_box for each alloc_box.
And IRGen re-uses the address value from the alloc_box if the operand of project_box is an alloc_box.
This lets the generated code be the same as before.
Other than that most changes of this (quite large) commit are straightforward.
Having a separate address and container value returned from alloc_stack is not really needed in SIL.
Even if they differ we have both addresses available during IRGen, because a dealloc_stack is always dominated by the corresponding alloc_stack in the same function.
Although this commit quite large, most changes are trivial. The largest non-trivial change is in IRGenSIL.
This commit is a NFC regarding the generated code. Even the generated SIL is the same (except removed #0, #1 and @local_storage).
This is something that we have wanted for a long time and will enable us to
remove some hacks from the compiler (i.e. how we determine in the ARC optimizer
that we have "fatalError" like function) and also express new things like
"noarc".
This commit changes the Swift mangler from a utility that writes tokens into a
stream into a name-builder that has two phases: "building a name", and "ready".
This clear separation is needed for the implementation of the compression layer.
Users of the mangler can continue to build the name using the mangleXXX methods,
but to access the results the users of the mangler need to call the finalize()
method. This method can write the result into a stream, like before, or return
an std::string.
Debug variable info may be attached to debug_value, debug_value_addr,
alloc_box, and alloc_stack instructions.
In order to write textual SIL -> SIL testcases that exercise the handling
of debug information by SIL passes, we need to make a couple of additions
to the textual SIL language. In memory, the debug information attached to
SIL instructions references information from the AST. If we want to create
debug info from parsing a textual .sil file, these bits need to be made
explicit.
Performance Notes: This is memory neutral for compilations from Swift
source code, because the variable name is still stored in the AST. For
compilations from textual source the variable name is stored in tail-
allocated memory following the SIL instruction that introduces the
variable.
<rdar://problem/22707128>
(libraries now)
It has been generally agreed that we need to do this reorg, and now
seems like the perfect time. Some major pass reorganization is in the
works.
This does not have to be the final word on the matter. The consensus
among those working on the code is that it's much better than what we
had and a better starting point for future bike shedding.
Note that the previous organization was designed to allow separate
analysis and optimization libraries. It turns out this is an
artificial distinction and not an important goal.