This commit adds new compiler options -no-warning-as-error/-warning-as-error which allows users to specify behavior for exact warnings and warning groups.
This fixes the debugger's ability to perform expression evaluation when debugging an
executable that was built with both under the following circumstances:
1. explicit module build
2. `-application-extension`
The fix is to include `-fapplication-extension` as an XCC field in the swiftmodule.
This primes the debugger's ClangImporter with the correct flag needed to load the
explicitly built pcm files generated at build time.
When direct cc1 mode is used, the cc1 arguments are generated from extra
clang targets so there is no need to add this extra argument.
Furthermore, the `--target=` is a clang driver argument and is not valid
under cc1 mode.
Needed for: rdar://134090397
This makes sure that Swift respects `-Xcc -stdlib=libc++` flags.
Clang already has existing logic to discover the system-wide libc++ installation on Linux. We rely on that logic here.
Importing a Swift module that was built with a different C++ stdlib is not supported and emits an error.
The Cxx module can be imported when compiling with any C++ stdlib. The synthesized conformances, e.g. to CxxRandomAccessCollection also work. However, CxxStdlib currently cannot be imported when compiling with libc++, since on Linux it refers to symbols from libstdc++ which have different mangled names in libc++.
rdar://118357548 / https://github.com/swiftlang/swift/issues/69825
The scanning action does not have any need for handling `-llvm` options, since it will never perform any code-gen. LLVM option processing relies on global option parsing structures, and the scanner has needed to carefully attempt to synchronize access to them. This change guards the configuration of LLVM options to not happen at all for dependency scanning actions, and removes calls to `llvm::cl::ResetAllOptionOccurrences()` that were previously needed.
Resolves rdar://120754696
When MCCAS is used, filter the object file from the CASOutputBackend
because we do not want to write the object file in the CAS, we want
to associate the MCCAS top level CAS Object to the main output of the
CASOutputBackend.
Previously we would call `getMembers`, which could
kick delayed member parsing. Instead, propagate a
`parseIfNeeded` flag through the ASTDumper logic,
and use it to determine whether to parse a
SourceFile, type/extension body, or function body.
This is needed for things like `-dump-parse` which
expects to dump the entire AST tree.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
We cannot always rely on being able to do so only as an overlay query upon loading 'requires cplusplus' modulemap modules. The 'requires' statement only applies to submodules, and we may not be able to query language feature modulemap attributes in dependency scanning context.
This is a regression causing lots of cached diagnostics tests not
functioning since the cached diagnostics processors are not initialized
for those tests which are supposed to test diagnostics caching.
The regression is caused by the fix that the typecheck module interface
job need to run a typecheck job in the sub-invocation. Now the typecheck
module interface job is correctly setup to avoid diagnostics about
unsupported file system error.
Add a fast path to create swift CompilerInstance when it is only used to
replay output when there is a cache hit. The normal `setup` function is
very expensive to call, especially in cache mode to setup inputs, and it
needs to be called once per input file from libSwiftScan API due to the
current caching granularity.
The fast path will only construct the part that is needed for output
replay, including the CAS, the output backend and caching diagnostic
processor.
rdar://127062609
SILOptions::EnableSerializePackage info is lost.
SILVerifier needs this info to determine whether resilience
can be bypassed for decls serialized in a resiliently
built module when Package CMO optimization enabled.
This PR adds SerializePackageEnabled bit to Module format
and uses that in SILVerifier.
Resolves rdar://126157356
Improve swift dependency scanner by validating and selecting dependency
module into scanner. This provides benefits that:
* Build system does not need to schedule interface compilation task if
the candidate module is picked, it can just use the candidate module
directly.
* There is no need for forwarding module in the explicit module build.
Since the build system is coordinating the build, there is no need for
the forwarding module in the module cache to avoid duplicated work,
* This also correctly supports all the module loading modes in the
dependency scanner.
This is achieved by only adding validate and up-to-date binary module as
the candidate module for swift interface module dependency. This allows
caching build to construct the correct dependency in the CAS. If there
is a candidate module for the interface module, dependency scanner will
return a binary module dependency in the dependency graph.
The legacy behavior is mostly preserved with a hidden frontend flag
`-no-scanner-module-validation`, while the scanner output is mostly
interchangeable with new scanner behavior with `prefer-interface` module
loading mode except the candidate module will not be returned.
rdar://123711823
Relying on the corresponding field in the '-explicit-swift-module-map-file' provided by the driver.
Only bridging headers require a module map because that's what aids header include resolution. With lazy module loading today, '.modulemap' parsing which happens when instantiating Clang is responsible for associating headers with modules. Then upon encountering a header include inside the bridging header the compiler knows which module corresponds to said header and is then able to load explicitly-provided PCM for that module. For all other module dependencies, they are only ever queried by-name from Swift, so '.modulemap' parsing is not necessary.
When building a module from its interface, do not diagnose whether or not a
feature is available in production compilers. This is important since older
compilers may be expected to build .swiftinterfaces that were produced by newer
compilers where the feature has been enabled by default.
Resolves rdar://125500318
allow a more standard way to pass experimental features
from build systems. Also moved other flags relevant to
diagnostics from Frontend options to Lang options.
Ref: rdar://124648653
we only check if the loaded module is built from a package interface. This is
not enough as a binary module could just contain exportable decls if built with
experimental-skip-non-exportable-decls, essentially resulting in content equivalent
to interface content. This might be made a default behavior so this PR requires
a module to opt in to allow non-resilient access by a participating client in the
same package.
Since it affects module format, SWIFTMODULE_VERSION_MINOR is updated.
rdar://123651270
Serialize a `--target=` flag (a driver option) instead of `-triple` (a frontend
option). The `XCC` values are passed as driver flags, where `-triple` is not defined.
The target is passed as a joined flag and value, which is more convenient for lldb to
consume.
When `-enable-lazy-typecheck` is specified, serialization may be expected to
run on an AST containing invalid declarations since type checking may happen
on-demand, during serialization, in this mode. If the declarations that are
invalid are not skipped, then the compiler is likely to crash when attempting
to serialize them. Now, invalid declarations are skipped and an error is
emitted at the end of serialization to note that serialization failed.
Additionally, a new `-Rmodule-serialization` flag can be specified to request
more detailed information about module serialization failures. This would be
useful in a situation where lazy typechecking does not produce any diagnostic
for some reason, but module serialization fails and more information is
therefore required to debug.
Resolves rdar://123260476
Swift interfaces currently aren't meant to expose C++ in their API so we should not also bring in this C++-related module dependency which is not found when the ClangImporter is not configured for C++.
Use a different context hash for modules built from caching using CAS
vs. normal swift modules. They should not be mixed since those cannot be
loaded as a dependencies for a module which is setup to build with a
different method.
rdar://122814823
A swiftmodule can only be correctly ingested by a compiler
that has a matching state of using or not-using
NoncopyableGenerics.
The reason for this is fundamental: the absence of a Copyable
conformance in the swiftmodule indicates that a type is
noncopyable. Thus, if a compiler with NoncopyableGenerics
reads a swiftmodule that was not compiled with that feature,
it will think every type in that module is noncopyable.
Similarly, if a compiler with NoncopyableGenerics produces a
swiftmodule, there will be Copyable requirements on each
generic parameter that the compiler without the feature will
become confused about.
The solution here is to trigger a module mismatch, so that
the compiler re-generates the swiftmodule file using the
swiftinterface, which has been kept compatible with the compiler
regardless of whether the feature is enabled.