Now that we emit the callee at the right time, we no longer need
to force emit the 'self' argument source at +0 and possibly
convert it to +1 later.
This is NFC, except it means we end_borrow the self value a bit
sooner sometimes, which is a good thing.
Support for @noescape SILFunctionTypes.
These are the underlying SIL changes necessary to implement the new
closure capture ABI.
Note: This includes a change to function name mangling that
primarily affects reabstraction thunks.
The new ABI will allow stack allocation of non-escaping closures as a
simple optimization.
The new ABI, and the stack allocation optimization, also require
closure context to be @guaranteed. That will be implemented as the
next step.
Many SIL passes pattern match partial_apply sequences. These all
needed to be fixed to handle the convert_function that SILGen now
emits. The conversion is now needed whenever a function declaration,
which has an escaping type, is passed into a @NoEscape argument.
In addition to supporting new SIL patterns, some optimizations like
inlining and SIL combine are now stronger which could perturb some
benchmark results.
These underlying SIL changes should be merged now to avoid conflicting
with other work. Minor benchmark discrepancies can be investigated as part of
the stack-allocation work.
* Add a noescape attribute to SILFunctionType.
And set this attribute correctly when lowering formal function types to SILFunctionTypes based on @escaping.
This will allow stack allocation of closures, and unblock a related ABI change.
* Flip the polarity on @noescape on SILFunctionType and clarify that
we don't default it.
* Emit withoutActuallyEscaping using a convert_function instruction.
It might be better to use a specialized instruction here, but I'll leave that up to Andy.
Andy: And I'll leave that to Arnold who is implementing SIL support for guaranteed ownership of thick function types.
* Fix SILGen and SIL Parsing.
* Fix the LoadableByAddress pass.
* Fix ClosureSpecializer.
* Fix performance inliner constant propagation.
* Fix the PartialApplyCombiner.
* Adjust SILFunctionType for thunks.
* Add mangling for @noescape/@escaping.
* Fix test cases for @noescape attribute, mangling, convert_function, etc.
* Fix exclusivity test cases.
* Fix AccessEnforcement.
* Fix SILCombine of convert_function -> apply.
* Fix ObjC bridging thunks.
* Various MandatoryInlining fixes.
* Fix SILCombine optimizeApplyOfConvertFunction.
* Fix more test cases after merging (again).
* Fix ClosureSpecializer. Hande convert_function cloning.
Be conservative when combining convert_function. Most of our code doesn't know
how to deal with function type mismatches yet.
* Fix MandatoryInlining.
Be conservative with function conversion. The inliner does not yet know how to
cast arguments or convert between throwing forms.
* Fix PartialApplyCombiner.
This replaces the '[volatile]' flag. Now, class_method and
super_method are only used for vtable dispatch.
The witness_method instruction is still overloaded for use
with both ObjC protocol requirements and Swift protocol
requirements; the next step is to make it only mean the
latter, also using objc_method for ObjC protocol calls.
This will let me treat self during delegating initialization as an lvalue and
thus be emitted later without a scope. Thus I can simplify delegating
initialization slightly and land my argument scoping work.
rdar://33358110
This fixes a crash when referencing partially-applied methods
from @_inlineable functions.
Also, curry thunks for private methods do not need shared
linkage; private is sufficient.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Officially kick SILBoxType over to be "nominal" in its layout, with generic layouts structurally parameterized only by formal types. Change SIL to lower a capture to a nongeneric box when possible, or a box capturing the enclosing generic context when necessary.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
This ensures that ownership is properly propagated forward through the use-def
graph.
This was the work that was stymied by issues relating to SILBuilder performing
local ARC dataflow. I ripped out that local dataflow in 6f4e2ab and added a
cheap ARC guaranteed dataflow pass that performs the same optimization.
Also in the process of doing this work, I found that there were many SILGen
tests that were either pattern matching in the wrong functions or had wrong
CHECK lines (for instance CHECK_NEXT). I fixed all of these issues and also
expanded many of the tests so that they verify ownership. The only work I left
for a future PR is that there are certain places in tests where we are using the
projection from an original value, instead of a copy. I marked those with a
message SEMANTIC ARC TODO so that they are easy to find.
rdar://28685236
* Migrate from `UnsafePointer<Void>` to `UnsafeRawPointer`.
As proposed in SE-0107: UnsafeRawPointer.
`void*` imports as `UnsafeMutableRawPointer`.
`const void*` imports as `UnsafeRawPointer`.
Occurrences of `UnsafePointer<Void>` are replaced with UnsafeRawPointer.
* Migrate overlays from UnsafePointer<Void> to UnsafeRawPointer.
This requires explicit memory binding in several places,
particularly in NSData and CoreAudio.
* Fix a bunch of test cases for Void->Raw migration.
* qsort takes IUO values
* Bridge `Unsafe[Mutable]RawPointer as `void [const] *`.
* Parse #dsohandle as UnsafeMutableRawPointer
* Update a bunch of test cases for Void->Raw migration.
* Trivial fix for the SceneKit test case.
* Add an UnsafeRawPointer self initializer.
This is unfortunately necessary for assignment between types imported from C.
* Tiny simplification of the initializer.
* Migrate from `UnsafePointer<Void>` to `UnsafeRawPointer`.
As proposed in SE-0107: UnsafeRawPointer.
`void*` imports as `UnsafeMutableRawPointer`.
`const void*` imports as `UnsafeRawPointer`.
Occurrences of `UnsafePointer<Void>` are replaced with UnsafeRawPointer.
* Migrate overlays from UnsafePointer<Void> to UnsafeRawPointer.
This requires explicit memory binding in several places,
particularly in NSData and CoreAudio.
* Fix a bunch of test cases for Void->Raw migration.
* qsort takes IUO values
* Bridge `Unsafe[Mutable]RawPointer as `void [const] *`.
* Parse #dsohandle as UnsafeMutableRawPointer
* Update a bunch of test cases for Void->Raw migration.
* Trivial fix for the SceneKit test case.
* Add an UnsafeRawPointer self initializer.
This is unfortunately necessary for assignment between types imported from C.
* Tiny simplification of the initializer.
Swift has supported this for a long time using manual casts and going
from Swift to Objective-C; just enable it now for the importer.
rdar://problem/15101588
Being generic, the '_unwrapped' intrinsics force trafficking through memory, and while they're transparent so always get inlined, we don't do memory promotion in -Onone. Emitting the branch inline lets loadable optionals stay values leading to better -Onone codegen. (It also lets us throw away a surprising amount of support code for these optional intrinsics.)
And use project_box to get to the address value.
SILGen now generates a project_box for each alloc_box.
And IRGen re-uses the address value from the alloc_box if the operand of project_box is an alloc_box.
This lets the generated code be the same as before.
Other than that most changes of this (quite large) commit are straightforward.
Having a separate address and container value returned from alloc_stack is not really needed in SIL.
Even if they differ we have both addresses available during IRGen, because a dealloc_stack is always dominated by the corresponding alloc_stack in the same function.
Although this commit quite large, most changes are trivial. The largest non-trivial change is in IRGenSIL.
This commit is a NFC regarding the generated code. Even the generated SIL is the same (except removed #0, #1 and @local_storage).
when working with autoreleased result conventions, and stop
emitting autorelease_return and strong_retain_autoreleased in
SILGen.
The previous representation, in which strong_retain_autoreleased
was divorced from the call site, allowed it to "wander off" and
be cloned. This would at best would break the optimization, but
it could also lead to broken IR due to some heroic but perhaps
misguided efforts in IRGen to produce the exact required code
pattern despite the representational flaws.
The SIL pattern for an autoreleased result now looks exactly
like the pattern for an owned result in both the caller and
the callee. This should be fine as long as interprocedural
optimizations are conservative about convention mismatches.
Optimizations that don't wish to be conservative here should
treat a convention mismatch as an autorelease (if the callee
has an autoreleased result) or a retain (if the formal type
of the call has an autoreleased result).
Fixes rdar://23810212, which is an IRGen miscompile after the
optimizer cloned a strong_retain_autoreleased. There's no
point in adding this test case because the new SIL pattern
inherently prevents this transformation by construction.
The 'autorelease_return' and 'strong_retain_autoreleased'
instructions are now dead, and I will remove them in a
follow-up commit.
All refutable patterns and function parameters marked with 'var'
is now an error.
- Using explicit 'let' keyword on function parameters causes a warning.
- Don't suggest making function parameters mutable
- Remove uses in the standard library
- Update tests
rdar://problem/23378003
SILPrinter was printing uses for all SIL values, except for SIL basic blocks arguments. Fill the gap and print uses for BB arguments as well. This makes reading and analyzing SIL easier.
Basic blocks may have multiple arguments, therefore print uses of each BB argument on separate lines - one line per BB argument.
The comment containing information about uses of a BB argument is printed on the line just above the basic block name, following the approach used for function_ref and other kinds of instructions, which have additional information printed on the line above the actual instruction.
The output now looks like:
// %0 // user: %3
// %1 // user: %9
bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<UnsafeMutablePointer<Int8>>):
rdar://23336589
And include some supplementary mangling changes:
- Give the first generic param (depth=0, index=0) a single character mangling. Even after removing the self type from method declaration types, 'Self' still shows up very frequently in protocol requirement signatures.
- Fix the mangling of generic parameter counts to elide the count when there's only one parameter at the starting depth of the mangling.
Together these carve another 154KB out of a debug standard library. There's some awkwardness in demangled strings that I'll clean up in subsequent commits; since decl types now only mangle the number of generic params at their own depth, it's context-dependent what depths those represent, which we get wrong now. Currying markers are also wrong, but since free function currying is going away, we can mangle the partial application thunks in different ways.
Swift SVN r32896
'Ss' appears in manglings tens of thousands of times in the standard library and is also incredibly frequent in other modules. This alone is enough to shrink the standard library by 59KB.
Swift SVN r32409
to not drop optionals in memory all the time. We now generate a lot better code
for them in many cases. This makes generated SIL more readable and should help
-O0 perf.
This is progress towards <rdar://problem/20642198> SILGen shouldn't be dropping optionals into memory all the time
Swift SVN r28102
The main thing that this patch does is work around a shortcoming of
SILGenApply namely that we in certain cases emit self before we know
what the callee is. We work around this by emitting self at +0 assuming
that the callee does pass self at +0 and set a flag. After we know what
the callee is, if the flag is set, we emit an extra retain for self.
rdar://15729033
Swift SVN r27553