registers instead of eagerly dumping them in memory and operating on
them by-address. This avoids a lot of temporaries and traffic to
manipulate them.
As part of this, add some new SGF::getOptionalNoneValue/getOptionalSomeValue
helper methods for forming loading optional values.
Many thanks to JoeG for helping with the abstraction difference change in
getOptionalSomeValue.
Swift SVN r27537
We no longer need or use it since we can always refer to the same bit on
the applied function when deciding whether to inline during mandatory
inlining.
Resolves rdar://problem/19478366.
Swift SVN r26534
the call instead of during the formal evaluation of the argument.
This is the last major chunk of the semantic changes proposed
in the accessors document. It has two purposes, both related
to the fact that it shortens the duration of the formal access.
First, the change isolates later evaluations (as long as they
precede the call) from the formal access, preventing them from
spuriously seeing unspecified behavior. For example::
foo(&array[0], bar(array))
Here the value passed to bar is a proper copy of 'array',
and if bar() decides to stash it aside, any modifications
to 'array[0]' made by foo() will not spontaneously appear
in the copy. (In contrast, if something caused a copy of
'array' during foo()'s execution, that copy would violate
our formal access rules and would therefore be allowed to
have an arbitrary value at index 0.)
Second, when a mutating access uses a pinning addressor, the
change limits the amount of arbitrary code that falls between
the pin and unpin. For example::
array[0] += countNodes(subtree)
Previously, we would begin the access to array[0] before the
call to countNodes(). To eliminate the pin and unpin, the
optimizer would have needed to prove that countNodes didn't
access the same array. With this change, the call is evaluated
first, and the access instead begins immediately before the call
to +=. Since that operator is easily inlined, it becomes
straightforward to eliminate the pin/unpin.
A number of other changes got bundled up with this in ways that
are hard to tease apart. In particular:
- RValueSource is now ArgumentSource and can now store LValues.
- It is now illegal to use emitRValue to emit an l-value.
- Call argument emission is now smart enough to emit tuple
shuffles itself, applying abstraction patterns in reverse
through the shuffle. It also evaluates varargs elements
directly into the array.
- AllowPlusZero has been split in two. AllowImmediatePlusZero
is useful when you are going to immediately consume the value;
this is good enough to avoid copies/retains when reading a 'var'.
AllowGuaranteedPlusZero is useful when you need a stronger
guarantee, e.g. when arbitrary code might intervene between
evaluation and use; it's still good enough to avoid copies
from a 'let'. The upshot is that we're now a lot smarter
about generally avoiding retains on lets, but we've also
gotten properly paranoid about calling non-mutating methods
on vars.
(Note that you can't necessarily avoid a copy when passing
something in a var to an @in_guaranteed parameter! You
first have to prove that nothing can assign to the var during
the call. That should be easy as long as the var hasn't
escaped, but that does need to be proven first, so we can't
do it in SILGen.)
Swift SVN r24709
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
Have the ArgumentInitVisitor directly bind argument variables to BB arguments, instead of trying to reuse the InitializationForPattern logic used for general variable bindings. That was a nice idea, but it leads to some ugly edge cases because of the many little ways arguments are different from local variable bindings. By getting rid of the abstraction layers, it's easy for argument binding to bind +0 guaranteed or +1 arguments in place when appropriate, avoiding an r/r pair for "let" bindings. It will also let us eliminate some ugly code from variable binding initialization. Should be NFC aside from some harmless reordering of prolog/epilog variable setup.
Swift SVN r24412
teach SILGenLValue that let values guarantee the lifetime of their value for at least
the duration of whatever expression references the let value. This allows us to eliminate
retains/release pairs in a lot of cases, and provides more value for people to use let
instead of var. This combines particularly well with +0 self arguments (currently just
protocol/archetype dispatches, but perhaps someday soon all method dispatches).
Thanks to John for suggesting this.
Swift SVN r24004
Doing so is safe even though we have mock SDK. The include paths for
modules with the same name in the real and mock SDKs are different, and
the module files will be distinct (because they will have a different
hash).
This reduces test runtime on OS X by 30% and brings it under a minute on
a 16-core machine.
This also uncovered some problems with some tests -- even when run for
iOS configurations, some tests would still run with macosx triple. I
fixed the tests where I noticed this issue.
rdar://problem/19125022
Swift SVN r23683
Use init_enum_data_addr and inject_enum_addr to construct optional values instead of the injection intrinsics, further simplifying -Onone IR. This not only avoids a call but also allows the frontend to emit optional payloads in-place in more cases, eliminating a lot of stack traffic.
Swift SVN r22549
When we've already established that the optional has a value, using unchecked_take_enum_data_addr to directly extract the enum payload is sufficient and avoids a redundant call and check at -Onone. Keep using the _getOptionalValue stdlib function for checked optional wrapping operations such as "x!", so that the stdlib can remain in control of trap handling policy.
The test/SIL/Serialization failures on the bot seem to be happening sporadically independent of this patch, and I can't reproduce failures in any configuration I've tried.
Swift SVN r22537
When we've already established that the optional has a value, using unchecked_take_enum_data_addr to directly extract the enum payload is sufficient and avoids a redundant call and check at -Onone. Keep using the _getOptionalValue stdlib function for checked optional wrapping operations such as "x!", so that the stdlib can remain in control of trap handling policy.
Swift SVN r22533
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
Avoids creating a dangling stack block reference when working with imported APIs that take blocks as IUOs, fixing rdar://problem/18132853.
Swift SVN r21662