Tasks shouldn't normally hog the actor context indefinitely after making a call that's bound to
that actor, since that prevents the actor from potentially taking on other jobs it needs to
be able to address. Set up SILGen so that it saves the current executor (using a new runtime
entry point) and hops back to it after every actor call, not only ones where the caller context
is also actor-bound.
The added executor hopping here also exposed a bug in the runtime implementation while processing
DefaultActor jobs, where if an actor job returned to the processing loop having already yielded
the thread back to a generic executor, we would still attempt to make the actor give up the thread
again, corrupting its state.
rdar://71905765
Most of the async runtime functions have been changed to not
expect the task and executor to be passed in. When knowing the
task and executor is necessary, there are runtime functions
available to recover them.
The biggest change I had to make to a runtime function signature
was to swift_task_switch, which has been altered to expect to be
passed the context and resumption function instead of requiring
the caller to park the task. This has the pleasant consequence
of allowing the implementation to very quickly turn around when
it recognizes that the current executor is satisfactory. It does
mean that on arm64e we have to sign the continuation function
pointer as an argument and then potentially resign it when
assigning into the task's resume slot.
rdar://70546948
While 'defer' is implemented as a local function, it doesn't
behave as one. In particular, since SILGen runs it after
destroying all local bindings that appear after the 'defer'
definition, the body of a 'defer' cannot forward reference
captured bindings the way that local functions can.
Note that I had to remove a SILGen test case for an older,
related issue. The new diagnostic in Sema catches these cases
earlier.
Fixes rdar://problem/75088379.
While it is very convenient to default the ExtInfo state when creating
new function types, it also make the intent unclear to those looking to
extend ExtInfo state. For example, did a given call site intend to have
the default ExtInfo state or does it just happen to work? This matters a
lot because function types are regularly unpacked and rebuilt and it's
really easy to accidentally drop ExtInfo state.
By changing the ExtInfo state to an optional, we can track when it is
actually needed.
In their previous form, the non-`_f` variants of these entry points were unused, and IRGen
lowered the `createAsyncTask` builtins to use the `_f` variants with a large amount of caller-side
codegen to manually unpack closure values. Amid all this, it also failed to make anyone responsible
for releasing the closure context after the task completed, causing every task creation to leak.
Redo the `swift_task_create_*` entry points to accept the two words of an async closure value
directly, and unpack the closure to get its invocation entry point and initial context size
inside the runtime. (Also get rid of the non-future `swift_task_create` variant, since it's unused
and it's subtly different in a lot of hairy ways from the future forms. Better to add it later
when it's needed than to have a broken unexercised version now.)
An actor can have @objc members, but not if those members are "actor-isolated",
i.e., not accessible from outside the actor according to the fundamental design
of actors. For example, a sync function is considered actor-isolated since it
needs special protection, so it cannot be @objc.
But, we now have special capabilities to treat sync actor functions as
implicitly async at use-sites outside of the actor. Does this mean that we can
now allow sync actor functions to be @objc? No. Because the implicitly-async
functionality does not extend to the world of ObjC: it simply would not be
feasible to implement it there.
Thus, I've added some extra regression-test coverage to handle these cases,
and clarified the assertion here to not confuse others.
The underlying runtime functions really want to be able to consume the closure being used
to spawn the task, but the implementation was trying to hide this by introducing a retain
at IRGen time, which is not very ARC-optimizer-friendly. Correctly model the builtin operands
as consumed so that the ownership verifier allows them to be taken +1.
Refactor SILGen's ApplyOptions into an OptionSet, add a
DoesNotAwait flag to go with DoesNotThrow, and sink it
all down into SILInstruction.h.
Then, replace the isNonThrowing() flag in ApplyInst and
BeginApplyInst with getApplyOptions(), and plumb it
through to TryApplyInst as well.
Set the flag when SILGen emits a sync call to a reasync
function.
When set, this disables the SIL verifier check against
calling async functions from sync functions.
Finally, this allows us to add end-to-end tests for
rdar://problem/71098795.
The strategy for implementing them is integrated with the
PathComponent infrastructure in SILGen in order to correctly
support mixtures of chained accesses and forced optionals, etc.
The actor isolation information is only piped into LValues from
the expressions that might be marked implicitly-async.
With "unsafe" global actor isolation, we only enforce actor isolation
when interacting with other explicitly-isolated code. This allows some
code to be annotated with, e.g., `@MainActor(unsafe)` so that users
who opt into concurrency get proper diagnostics, but existing code
does not change.
* Refactoring: replace "Destination" and the ownership qualifier by a single "Mode". This represents much better the mode how the instruction is to be lowered. NFC
* Make assign_by_wrapper printable and parseable.
* Fix lowering of the assign modes for indirect results of the init-closure: The indirect result was initialized and not assigned to. The fix is to insert a destroy_addr before calling the init closure. This fixes a memory lifetime error and/or a memory leak. Found by inspection.
* Fix an iterator-invalidation crash in RawSILInstLowering
* Add tests for lowering assign_by_wrapper.
Before this patch every Swift function would contain a top-level
DW_TAG_lexical_scope that didn't provide any useful information, used extra
space in the debug info and prevented local variables from showing up in virtual
async backtraces.
This is kind of complicated, because an enum can be trivial for one case and not trivial for another case. We need to check at which parts of the function we can prove that the enum does (or could) have a trivial case. In such a branch, it's not required in SIL to destroy the enum location.
Also, document the rules and requirements for enum memory locations in SIL.rst.
rdar://73770085
This is a follow-up to e9d557ae28. The
debug_value for the guard let binding is introduced by SGF.emitStmtCondition(),
so we also need to enter the debug scope before running that function.
rdar://74538257
Import APIs with the `swift_async_error` attribute in `zero_argument` or `nonzero_argument`
modes by checking the corresponding boolean argument to indicate the error status, instead of
treating it as part of the result tuple. rdar://70594666
Plumb generic signatures through the codegen for invoking foreign APIs as async, so that we
correctly handle APIs declared on ObjC lightweight generic classes. rdar://74361267