Add the following new mangling rules.
```
global ::= from-type to-type 'TJO' AUTODIFF-FUNCTION-KIND // autodiff self-reordering reabstraction thunk
global ::= from-type 'TJS' AUTODIFF-FUNCTION-KIND INDEX-SUBSET 'p' INDEX-SUBSET 'r' INDEX-SUBSET 'P' // autodiff linear map subset parameters thunk
global ::= global to-type 'TJS' AUTODIFF-FUNCTION-KIND INDEX-SUBSET 'p' INDEX-SUBSET 'r' INDEX-SUBSET 'P' // autodiff derivative function subset parameters thunk
```
Example:
```console
$s13TangentVector16_Differentiation14DifferentiablePQzAaDQy_SdAFIegnnnr_TJSdSSSpSrSUSP ---> autodiff subset parameters thunk for differential from @escaping @callee_guaranteed (@in_guaranteed A._Differentiation.Differentiable.TangentVector, @in_guaranteed B._Differentiation.Differentiable.TangentVector, @in_guaranteed Swift.Double) -> (@out B._Differentiation.Differentiable.TangentVector) with respect to parameters {0, 1, 2} and results {0} to parameters {0, 2}
$sS2f8mangling3FooV13TangentVectorVIegydd_SfAESfIegydd_TJOp ---> autodiff self-reordering reabstraction thunk for pullback from @escaping @callee_guaranteed (@unowned Swift.Float) -> (@unowned Swift.Float, @unowned mangling.Foo.TangentVector) to @escaping @callee_guaranteed (@unowned Swift.Float) -> (@unowned mangling.Foo.TangentVector, @unowned Swift.Float)
```
Resolves rdar://72666310 / SR-13508.
Also fix a bug in `AutoDiffFunction` mangling where the original may be a global that contains more than 1 node (rdar://74151229 / SR-14106).
We checked isMutating() on the accessor, and if it was false, called
isNonMutatingSelfIndirect(), which would assert that the accessor
satisfies isNonMutating().
However, isNonMutating() is not the opposite of isMutating(); rather,
one of isMutating(), isNonMutating() or isConsuming() is true.
Change the assertion to reflect this case.
Fixes rdar://problem/74095841.
The goal of doing this is to reduce the amount of boilerplate and repeated code w.r.t. Continuation. Having just added `resume()` in four places, I got the sense that there was a lot of common code that was being duplicated. I removed the Throwing variants of these types (they can be expressed as Continuation<T, E:Error> instead of ThrowingContinuation<E>) and I broke out a significant amount of common code between CheckedContinuation and UnsafeContinuation into an implementation-only protocol to avoid repeating it. D.R.Y.
This change resolves rdar://74154769.
Swift allows a method override to be more visible than the base method.
In practice, this means that since it might be possible for client
code to see the override but not the base method, we have to take
extra care when emitting the override.
Specifically, the override always receives a new vtable entry, and
a vtable thunk is emitted in place of the base method's vtable entry
which re-dispatches via the override's vtable entry.
This allows client code to further override the method without any
knowledge of the base method's vtable entry, which may be inaccessible
to the client.
In order for the above to work, three places in the code perform
co-ordinated checks:
- needsNewVTableEntry() determines whether the override is more
visible than the base, in which case it receives a new vtable
entry
- SILGenModule::emitVTableMethod() performs the same check in order
to emit the re-dispatching vtable thunk in place of the base
method's entry
- in the client, SILVTableVisitor then skips the base method's
vtable entry entirely when emitting the derived class, since no
thunk is to be emitted.
The problem was that the first two used effective access (where
internal declarations become public with -enable-testing), while
the last check used formal access. As a result, it was possible
for the method override vtable entry to never be emitted in the
client.
Consistently using either effective access or formal access would
fix the problem. I fixed the first two to rely on formal access;
the reason is that using effective access makes vtable layout
depend on whether the library was built with -enable-testing or
not, which is undesirable since we do not want -enable-testing to
impact the ABI, even for non-resilient frameworks.
Fixes rdar://problem/74108928.
The bridging code handles optional wrapping and unwrapping, but in cases where a nullable completion
callback argument did not need bridging, it would get short circuited out of the bridging code, and
did not get unwrapped. Fixes rdar://73798726
My goal was to reduce the size of SILLocation. It now contains only of a storage union, which is basically a pointer and a bitfield containing the Kind, StorageKind and flags. By far, most locations are only single pointers to an AST node. For the few cases where more data needs to be stored, this data is allocated separately: with the SILModule's bump pointer allocator.
While working on this, I couldn't resist to do a major refactoring to simplify the code:
* removed unused stuff
* The term "DebugLoc" was used for 3 completely different things:
- for `struct SILLocation::DebugLoc` -> renamed it to `FilePosition`
- for `hasDebugLoc()`/`getDebugSourceLoc()` -> renamed it to `hasASTNodeForDebugging()`/`getSourceLocForDebugging()`
- for `class SILDebugLocation` -> kept it as it is (though, `SILScopedLocation` would be a better name, IMO)
* made SILLocation more "functional", i.e. replaced some setters with corresponding constructors
* replaced the hand-written bitfield `KindData` with C bitfields
* updated and improved comments
Previously, the name of the entry point function was always main. Here,
a new frontend flag is added to enable an arbitrary name to be
specified.
rdar://58275758
* Initial draft of async sequences
* Adjust AsyncSequence associated type requirements
* Add a draft implementation of AsyncSequence and associated functionality
* Correct merge damage and rename from GeneratorProtocol to AsyncIteratorProtocol
* Add AsyncSequence types to the cmake lists
* Add cancellation support
* [DRAFT] Implementation of protocol conformance rethrowing
* Account for ASTVerifier passes to ensure throwing and by conformance rethrowing verifies appropriately
* Remove commented out code
* OtherConstructorDeclRefExpr can also be a source of a rethrowing kind function
* Re-order the checkApply logic to account for existing throwing calculations better
* Extract rethrowing calculation into smaller functions
* Allow for closures and protocol conformances to contribute to throwing
* Add unit tests for conformance based rethrowing
* Restrict rethrowing requirements to only protocols marked with @rethrows
* Correct logic for gating of `@rethrows` and adjust the determinates to be based upon throws and not rethrows spelling
* Attempt to unify the async sequence features together
* Reorder try await to latest syntax
* revert back to the inout diagnosis
* House mutations in local scope
* Revert "House mutations in local scope"
This reverts commit d91f1b25b59fff8e4be107c808895ff3f293b394.
* Adjust for inout diagnostics and fall back to original mutation strategy
* Convert async flag to source locations and add initial try support to for await in syntax
* Fix case typo of MinMax.swift
* Adjust rethrowing tests to account for changes associated with @rethrows
* Allow parsing and diagnostics associated with try applied to for await in syntax
* Correct the code-completion for @rethrows
* Additional corrections for the code-completion for @rethrows this time for the last in the list
* Handle throwing cases of iteration of async sequences
* restore building XCTest
* First wave of feedback fixes
* Rework constraints checking for async sequence for-try-await-in checking
* Allow testing of for-await-in parsing and silgen testing and add unit tests for both
* Remove async sequence operators for now
* Back out cancellation of AsyncIteratorProtocols
* Restructure protocol conformance throws checking and cache results
* remove some stray whitespaces
* Correct some merge damage
* Ensure the throwing determinate for applying for-await-in always has a valid value and adjust the for-await-in silgen test to reflect the cancel changes
* Squelch the python linter for line length
The "semantic members" query produces the list of members that can
affect the ABI, e.g., of classes. It does not produce the complete
list of members suitable for semantic queries.
A GuardStmt can shadow bindings from outer scopes, so make sure
we actually create a new debug scope here.
Note that we push the scope, but pop it when the next innermost
debug scope ends. To keep track of this I added a new bit of state
to the debug scope stack, indicating that this scope originated
from a GuardStmt.
Ideally, debug info would rely on ASTScope which is the canonical
source of truth for this information. For now, this is a spot fix.
I filed <rdar://problem/72954242> to track implementing the longer
term solution.
Fixes <rdar://problem/72900354>.
If a completion handler takes an error argument, then the non-error arguments are bridged and forwarded to
the continuation only on the happy path. Make sure we forward a copy so the retain level of the success values
remains balanced across both branches. Fixes rdar://72604599.
- `Mangle::ASTMangler::mangleAutoDiffDerivativeFunction()` and `Mangle::ASTMangler::mangleAutoDiffLinearMap()` accept original function declarations and return a mangled name for a derivative function or linear map. This is called during SILGen and TBDGen.
- `Mangle::DifferentiationMangler` handles differentiation function mangling in the differentiation transform. This part is necessary because we need to perform demangling on the original function and remangle it as part of a differentiation function mangling tree in order to get the correct substitutions in the mangled derivative generic signature.
A mangled differentiation function name includes:
- The original function.
- The differentiation function kind.
- The parameter indices for differentiation.
- The result indices for differentiation.
- The derivative generic signature.
It is illegal to borrow an unowned value. Unowned values are only
allowed to have specific instantaneous uses.
In this case, an unchecked conversion is valid because there is an
assumption that within a destructor, self is guaranteed.
LifetimeChecker::shouldEmitError in order to avoid incorrectly
populating EmittedErrorLocs when no error is emitted.
This fixes a few corner cases where DI would error out or crash
while assigning to a wrapped property with a nonmutating setter.