Instead of creating an archetype builder with a module---which was
only used for protocol conformance lookups of concrete types
anyway---create it with a LookupConformanceFn. This is NFC for now,
but moves us closer to making archetype builders more canonicalizable
and reusable.
The typedef `swift::Module` was a temporary solution that allowed
`swift::Module` to be renamed to `swift::ModuleDecl` without requiring
every single callsite to be modified.
Modify all the callsites, and get rid of the typedef.
Teach the serialized form of ArchetypeType about its owning generic
environment, so we can wire up the generic environment of (primary)
archetypes eagerly (at the point of deserialization) rather than when
we form the generic environment. This ensures that there is no point
at which we have a (non-opened-existential) archetype without a
generic environment.
... except that the type reconstruction code creates such archetypes.
* Pack the bits for IfConfigDecls into Decl
* Don't open symbols into a module when evaluating canImport statements
The module loaders now have API to check whether a given module can be
imported without importing the referenced module. This provides a
significant speed boost to condition resolution and no longer
introduces symbols from the referenced module into the current context
without the user explicitly requesting it.
The definition of ‘canImport’ does not necessarily mean that a full
import without error is possible, merely that the path to the import is
visible to the compiler and the module is loadable in some form or
another.
Note that this means this check is insufficient to guarantee that you
are on one platform or another. For those kinds of checks, use
‘os(OSNAME)’.
Not sure why but this was another "toxic utility method".
Most of the usages fell into one of three categories:
- The base value was always non-null, so we could just call
getCanonicalType() instead, making intent more explicit
- The result was being compared for equality, so we could
skip canonicalization and call isEqual() instead, removing
some boilerplate
- Utterly insane code that made no sense
There were only a couple of legitimate uses, and even there
open-coding the conditional null check made the code clearer.
Also while I'm at it, make the SIL open archetypes tracker
more typesafe by passing around ArchetypeType * instead of
Type and CanType.
This is intended to have no functional effect, but there was a
minor change to a diagnostic in invalid code in the tests for the
unfinished ASTScope code; I hope I didn't break anything more
fundamental there.
We might allow protocols inside non-generic class/struct/enum
declarations eventually; there's no conceptual difficulty, just
some IRGen and Serialization work that has to happen first.
Also, this fixes a crasher :-)
We "fake" a conformance of UnresolvedType to any protocol.
Instead of returning a concrete conformance, return an
abstract conformance. The concrete conformance had several
problems leading to further crashes:
- The DC was set to a module, not a type declaration context,
since there is not type declaration context here.
- The conformance was marked complete even though it was missing
inherited conformances.
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
The protocol conformance checker tries to delay the emission of
diagnostics related to the failure of a type to conform to a protocol
until the source file that contains the conformance is encountered, to
provide redundant diagnostics. However, if a file produced only such
delayed diagnostics, such that all diagnostics were suppressed,
invalid ASTs could slip through to later stages in the pipeline where
they would cause verification errors and crashes. This happens
generally with whole-module-optimization builds, where we are re-using
an ASTContext when typing multiple source files.
This is a narrow-ish fix to stop dropping diagnostics from one source
file to the next in whole-module-optimization builds. Part of
rdar://problem/29689007.
- TypeAliasDecl::getAliasType() is gone. Now, getDeclaredInterfaceType()
always returns the NameAliasType.
- NameAliasTypes now always desugar to the underlying type as an
interface type.
- The NameAliasType of a generic type alias no longer desugars to an
UnboundGenericType; call TypeAliasDecl::getUnboundGenericType() if you
want that.
- The "lazy mapTypeOutOfContext()" hack for deserialized TypeAliasDecls
is gone.
- The process of constructing a synthesized TypeAliasDecl is much simpler
now; instead of calling computeType(), setInterfaceType() and then
setting the recursive properties in the right order, just call
setUnderlyingType(), passing it either an interface type or a
contextual type.
In particular, many places weren't setting the recursive properties,
such as the ClangImporter and deserialization. This meant that queries
such as hasArchetype() or hasTypeParameter() would return incorrect
results on NameAliasTypes, which caused various subtle problems.
- Finally, add some more tests for generic typealiases, most of which
fail because they're still pretty broken.
When deserializing the generic environment for a generic type, only
immediately deserialize the generic signature. The generic environment
will be deserialized later, when it's needed.
When we deserialize a function that has a generic environment, set the
generic signature and a key to allow lazy creation of the generic
environment. Because most clients won't need the generic environment,
this lets us avoid creating generic environments.
Save two pointers of storage in IterableDeclContext (a base class of
nominal type and extension declarations) by storing the lazy member
loader + context data in an ASTContext side table. It also makes it
easier to add more lazy context information later on.
While not strictly needed for type checking, it's extremely useful for
debugging and verification to know what context a particular generic
environment is associated with. This information was in a kludgy side
table, but it's worth a pointer in GenericEnvironment to always have
it available.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
Store the archetype-to-interface-type mapping (which is used to map
*out* of a generic environment) is a tail-allocated array of
(archetype, generic type parameter) pairs. This array is built up
lazily, as we compute the context types for generic parameters.
Searching in this array is linear while it is being constructed. Once
it is complete, it is sorted so that future searches are logarithmic.
Aside from the space savings of not having a DenseMap lying around,
this means we no longer need to register a destructor of a
GenericEnvironment with the ASTContext, which saves us tear-down
time.
Superclass constraints are uncommon, so put them into trailing-object
storage. Similarly, there's no reason to pay for the pointer + size of
the array of protocols to which the archetype conforms when we can use
trailing objects and existing padding bits.
Note that the nested types are *not* tail-allocated because they will
(eventually) be lazily allocated.
Rather than storing a heavyweight DenseMap for the mapping from
interface types (which are always generic type parameters) to their
corresponding context types, tail-allocate the array of context types
as an array parallel to the generic type parameters array. Use
GenericParamKey's lookup facilities and the new
type-substitution-function-based version of Type::subst() to handle
queries efficiently.
This eliminates the really gross registration of archetype builders
within the ASTContext, and is another little step toward lazily
constructing archetypes.
Rather than directly using the ArchetypeBuilder associated with a
canonical generic signature, use a canonical GenericEnvironment
associated with that canonical generic signature. This has a few
benefits:
* It's cleaner to not have IRGen working with archetype builders;
GenericEnvironment is the right abstraction for mapping between
dependent types and archetypes for a specific context.
* It helps us separate the archetype builder from a *specific*
set of archetypes. This is an ongoing refactor that is intended to
allow us to re-use archetype builders across different generic
environments.
As part of this, ArchetypeBuilder::substDependentType() has gone away
in favor of GenericEnvironment::mapTypeIntoContext().
Store leading a trailing "trivia" around a token, such as whitespace,
comments, doc comments, and escaping backticks. These are syntactically
important for preserving formatting when printing ASTs but don't
semantically affect the program.
Tokens take all trailing trivia up to, but not including, the next
newline. This is important to maintain checks that statements without
semicolon separators start on a new line, among other things.
Trivia are now data attached to the ends of tokens, not tokens
themselves.
Create a new Syntax sublibrary for upcoming immutable, persistent,
thread-safe ASTs, which will contain only the syntactic information
about source structure, as well as for generating new source code, and
structural editing. Proactively move swift::Token into there.
Since this patch is getting a bit large, a token fuzzer which checks
for round-trip equivlence with the workflow:
fuzzer => token stream => file1
=> Lexer => token stream => file 2 => diff(file1, file2)
Will arrive in a subsequent commit.
This patch does not change the grammar.
This function had a weird, pre-ProtocolConformanceRef interface that
returned true when the type conformed to the protocol, then had a
separate indirect return value for the concrete conformance (if there
is one). Refactor this API, and the similar
TypeChecker::containsProtocol(), to produce an optional
ProtocolConformanceRef, which is far more idiomatic and easier to
use. Push ProtocolConformanceRef into a few more places. Should be NFC
An environment is always associated with a location with a signature, so
having them separate is pointless duplication. This patch also updates
the serialization to round-trip the signature data.
The ASTContext had a wacky "get member type" callback that actually
called back into the constraint system (!) to build member types. This
callback was obsoleted by the change that started representing nested
types as DependentMemberTypes.