Mostly NFC, this is just plumbing for the next patch.
Note that isNever() returns true for any uninhabited
enum.
It should be generalized so that stuff like (Never, Int)
is also known to be uninhabited, or even to support
generic substitutions that yield uninhabited types,
but for now I really see no reason to go that far, and
the current check for an enum with no cases seems
perfectly adequate.
In various cases where we had global operators for non-generic
concrete types (such as String + String), move those operators into
the type. This should not affect the sources, but makes the exposition
of the library cleaner.
Plus, it's a good test for the compiler, which uncovered a few issues
where the compiler was coupled with the library.
Also adds:
- Any is caught before doing an unconstrained lookup, and the
protocol<> type is emitted
- composition expressions can be handled by
`PreCheckExpression::simplifyTypeExpr` to so you can do lookups like (P
& Q).self
- Fixits corrected & new tests added
- Typeref lowering cases should have been optional
- This fixes a failing test case.
This commit defines the ‘Any’ keyword, implements parsing for composing
types with an infix ‘&’, and provides a fixit to convert ‘protocol<>’
- Updated tests & stdlib for new composition syntax
- Provide errors when compositions used in inheritance.
Any is treated as a contextual keyword. The name ‘Any’
is used emit the empty composition type. We have to
stop user declaring top level types spelled ‘Any’ too.
In Swift, default arguments are associated with a function or
initializer's declaration---not with its type. This was not always the
case, and TupleType's ability to store a default argument kind is a
messy holdover from those dark times.
Eliminate the default argument kind from TupleType, which involves
migrating a few more clients over to declaration-centric handling of
default arguments. Doing so is usually a bug-fix anyway: without the
declaration, one didn't really have
The SILGen test changes are due to a name-mangling fix that fell out
of this change: a tuple type is mangled differently than a non-tuple
type, and having a default argument would make the parameter list of a
single-parameter function into a tuple type. Hence,
func foo(x: Int = 5)
would get a different mangling from
func foo(x: Int)
even though we didn't actually allow overloading.
Fixes rdar://problem/24016341, and helps us along the way to SE-0111
(removing the significance of argument labels) because argument labels
are also declaration-centric, and need the same information.
A given Objective-C error enum, which is effectively an NS_ENUM that
specifies its corresponding error domain, will now be mapped to an
ErrorProtocol-conforming struct that wraps an NSError, much like
NSCocoaError does. The actual enum is mapped to a nested "Code"
enum. For example, CoreLocation's CLError becomes:
struct CLError : ErrorProtocol {
let _nsError: NSError
// ...
@objc enum Code : Int {
case ...
}
}
This implements bullet (2) in the proposed solution of SE-0112, so
that Cocoa error types are mapped into structures that maintain the
underlying NSError to allow more information to be extracted from it.
Introduce bridging of NSError to ErrorProtocol, so an Objective-C API
expressed via an "NSError *" will be imported using ErrorProtocol in
the Swift. For example, the Objective-C method:
- (void)handleError:(NSError *)error userInteractionPermitted:(BOOL)userInteractionPermitted;
will now be imported as:
func handleError(_ error: ErrorProtocol, userInteractionPermitted: Bool)
This is bullet (3) under the proposed solution of SE-0112. Note that
we made one semantic change here: instead of removing the conformance
of NSError to ErrorProtocol, which caused numerous problems both
theoretical and actual because the model expects that an NSError
conforms to ErrorProtocol without requiring wrapping, we instead limit
the ErrorProtocol -> NSError conversion that would be implied by
bridging. This is defensible in the short term because it also
eliminates the implicit conversion, and aligns with SE-0072, which
eliminates implicit bridging conversions altogether.
Previously getInterfaceType() would punt to getType() if no
interface type was set. This patch changes getInterfaceType()
to assert if no interface type is set, and updates various
places to set the interface type explicitly.
This brings us a step closer to removing PolymorphicFunctionType.
This is obviously the right thing to do in terms of ensuring
that two different expressions of the same signature always result
in the same type. It also has the pleasant side-effect of causing
the canonical function type to never be expressed in terms of type
parameters which have been equated with concrete types, which means
that various consumers that work primarily with canonical types
(such as SILGen and IRGen) no longer have to worry about such types,
at least when decomposing a generic function signature.
There was a weirdness with ProtocolType::get() that was causing me grief
while trying to refactor getDeclaredType() and related code in another
patch.
Instead of caching the result like we do elsewhere, this would directly
store the new type into the ProtocolDecl. This is smelly, so let's not
do that.
I don't think this caused any problems until now, but it will
come up once the parent type can itself be a BoundGenericType,
because then we need to inherit recursive properties from the
generic arguments.
Being generic, the '_unwrapped' intrinsics force trafficking through memory, and while they're transparent so always get inlined, we don't do memory promotion in -Onone. Emitting the branch inline lets loadable optionals stay values leading to better -Onone codegen. (It also lets us throw away a surprising amount of support code for these optional intrinsics.)
We already have detailed knowledge of Optional's layout in SILGen, so these intrinsics were almost unused. They were only used in a few obscure places by some optional-to-bool conversions, used by 'is [A]' collection tests and the codegen for 'lazy' properties. Change these over to generate an EnumIsCaseExpr that we can directly lower to a 'select_enum' instruction in SILGen, leading to better codegen and obviating the need for these intrinsic functions.
This is a follow-up to the change that allowed one to omit @objc (or
the name in an @objc) when it can be inferred by matching a
requirement. There is no point in suggesting that one add @objc if it
will be inferred anyway, since it's just syntactic noise.
The verifier now asserts that Throws, ThrowsLoc and isBodyThrowing()
match up.
Also, add /*Label=*/ comments where necessary to make the long argument
lists easier to read, and cleaned up some inconsistent naming conventions.
I caught a case where ClangImporter where we were passing in a loc as
StaticLoc instead of FuncLoc, but probably this didn't affect anything.
When a non-@objc witness matches an @objc requirement except for
@objc-ness, treat it the same way whether it's an optional requirement
or not, except that it's a warning for the optional case. Should
finish off rdar://problem/25159872.
When an optional requirement of an @objc protocol has a selector that
collides with an entity that has a different *Swift* name but produces
an Objective-C method with the same selector, we have an existing
diagnostic complaining about the conflict. In such cases, make a few
suggestions (with Fix-Its) to improve the experience:
* Change Swift name to match the requirement, adding or modifying the
@objc as appropriate.
* Add "@nonobjc" to silence the diagnostic, explicitly opting out of
matching an @objc requirement.
This is intended to help with migration of Swift 2 code into Swift
3. The Swift 2 code will produce selectors that match Objective-C
methods in the protocol from Swift names that don't match; this helps
fix up those Swift names so that we now match.
Fixes the rest of rdar://problem/25159872. In some sense, it's a
stop-gap for more detailed checking of near-misses for optional
requirements, but it's not clear how wide-reaching such changes would
be.
When an optional requirement of an @objc protocol has a selector that
collides with an entity that has a different *Swift* name but produces
an Objective-C method with the same selector, we have an existing
diagnostic complaining about the conflict. In such cases, make a few
suggestions (with Fix-Its) to improve the experience:
* Change Swift name to match the requirement, adding or modifying the
@objc as appropriate.
* Add "@nonobjc" to silence the diagnostic, explicitly opting out of
matching an @objc requirement.
This is intended to help with migration of Swift 2 code into Swift
3. The Swift 2 code will produce selectors that match Objective-C
methods in the protocol from Swift names that don't match; this helps
fix up those Swift names so that we now match.
Fixes the rest of rdar://problem/25159872. In some sense, it's a
stop-gap for more detailed checking of near-misses for optional
requirements, but it's not clear how wide-reaching such changes would
be.
Implements SE-0055: https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md
- Add NULL as an extra inhabitant of Builtin.RawPointer (currently
hardcoded to 0 rather than being target-dependent).
- Import non-object pointers as Optional/IUO when nullable/null_unspecified
(like everything else).
- Change the type checker's *-to-pointer conversions to handle a layer of
optional.
- Use 'AutoreleasingUnsafeMutablePointer<NSError?>?' as the type of error
parameters exported to Objective-C.
- Drop NilLiteralConvertible conformance for all pointer types.
- Update the standard library and then all the tests.
I've decided to leave this commit only updating existing tests; any new
tests will come in the following commits. (That may mean some additional
implementation work to follow.)
The other major piece that's missing here is migration. I'm hoping we get
a lot of that with Swift 1.1's work for optional object references, but
I still need to investigate.
- Extract the cache entry type to a top-level type that can be used in the
signature of the function.
- Rewrite the implementation of the type in terms of standard LLVM ADTs
instead of manual bit manipulation.
- Add support for trivial-with-optional types (none of which exist yet).
- Drop the use of SIL/BridgedTypes.def; the only non-trivial non-object
bridged type today is 'Bool' (for ObjCBool and DarwinBoolean) and that's
already trivially bridged to CBool too.
- Save an Identifier lookup when possible.
- Finally, rename the function to getForeignRepresentationInfo.
No intended functionality change.
With the exception of a specific whitelist of cases where the
Foundation module defines conformances to _ObjectiveCBridgeable for
standard library types, only permit an _ObjectiveCBridgeable
conformance in the same module as the type that's conforming to the
protocol. Among other things, this prevents the optimizer from
concluding that a dynamic cast between a Swift value type and its
bridged Objective-C class type can never succeed. See
34ff1c8e6d
for the optimizer issue. As part of this, bring the whitelist in sync
with reality, now that the compiler enforces it.
Introduce abstraction patterns for curried C-functions-as-methods for type lowering, and plumb the "foreign self parameter index" through call emission so that we emit the "self" parameter in the right position. This gets us handling C functions imported as methods with explicit swift_name attributes in simple, fully-applied cases. There's still more work to be done for properties, partial applications, and initializers introduced by extensions.
Migrate the check for whether a given type is representable in
Objective-C, which is currently used to verify when @objc can be
inferred or verify that an explicitly-written @objc is well-formed,
from Sema into a set of queries on the Type within the AST library, so
it can be used in other parts of the compiler.
As part of this refactoring, clean up and improve a number of aspects
of this code:
* Unify the "trivially representable" and "representable" code paths
into a single code path that covers these cases. Clarify the
different levels of "representable" we have in both the code and
in comments.
* Distinguish between representation in C vs. representation in
Objective-C. While we aren't using this now, I'm anticipating it
being useful to allow exporting C interfaces via @_cdecl (or
similar).
* Eliminate the special cases for bridging String/Array/Dictionary/Set
with their Foundation counterparts; we now consult
_ObjectiveCBridgeable conformances exclusively to get this
information.
* Cache foreign-representation information on the ASTContext in a
manner that will let us more easily get the right answer across
different contexts while providing more sharing than the TypeChecker
version.
Annoyingly, this only seemed to fix a small class of error where we
were permitting Unsafe(Mutable)Pointer<T> to be representable in
Objective-C when T was representable but not trivially representable,
e.g., T=String or T=AnyObject.Type.
There's an immediate need for this in the core libs, and we have most of the necessary pieces on hand to make it easy to implement. This is an unpolished initial implementation, with the following limitations, among others:
- It doesn't support bridging error conventions,
- It relies on ObjC interop,
- It doesn't check for symbol name collisions,
- It has an underscored name with required symbol name `@cdecl("symbol_name")`, awaiting official bikeshed painting.