The RValue(ArrayRef<ManagedValue>, CanType) constructor was intended as a semi-private interface for building an RValue from a pre-exploded array of elements, but was (understandably) widely being misused as a general ManagedValue-to-RValue constructor, causing crashes when working with tuples in various contexts where RValue's methods expected them to be exploded. Make the constructor private and update most improper uses of it to use the exploding RValue constructor, or to use a new `RValue::withPreExplodedElements` static method that more explicitly communicates the intent of the constructor. Fixes rdar://problem/29500731.
Before this commit all code relating to handling arguments in SILBasicBlock had
somewhere in the name BB. This is redundant given that the class's name is
already SILBasicBlock. This commit drops those names.
Some examples:
getBBArg() => getArgument()
BBArgList => ArgumentList
bbarg_begin() => args_begin()
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
This ensures that ownership is properly propagated forward through the use-def
graph.
This was the work that was stymied by issues relating to SILBuilder performing
local ARC dataflow. I ripped out that local dataflow in 6f4e2ab and added a
cheap ARC guaranteed dataflow pass that performs the same optimization.
Also in the process of doing this work, I found that there were many SILGen
tests that were either pattern matching in the wrong functions or had wrong
CHECK lines (for instance CHECK_NEXT). I fixed all of these issues and also
expanded many of the tests so that they verify ownership. The only work I left
for a future PR is that there are certain places in tests where we are using the
projection from an original value, instead of a copy. I marked those with a
message SEMANTIC ARC TODO so that they are easy to find.
rdar://28685236
I am removing these usages of this API since it conflicts with SILGen's want to
hold onto copy_value return values for ownership propagation purposes. If any of
the copy_value are folded, the reference that SILGen holds onto will be
invalid.
rdar://28685236
This allows for slightly better codegen for nested functions that refer to other nested functions that don't transitively capture any local state, but more importantly, allows methods of local types to work while still referring to nested functions that don't capture local state, fixing rdar://problem/28015090.
Today, loads and stores are treated as having @unowned(unsafe) ownership
semantics. This leaves the user to specify ownership changes on the loaded or
stored value independently of the load/store by inserting ARC operations. With
the change to Semantic SIL, this will no longer be true. Instead loads, stores
have ownership semantics that one must reason about such as copy, take, and
trivial.
This change moves us closer to that world by eliminating the default
OwnershipQualification argument from create{Load,Store}. This means that the
compiler developer cannot ignore reasoning about the ownership semantics of the
memory operation that they are creating.
Operationally, this is a NFC change since I have just gone through the compiler
and updated all places where we create loads, stores to pass in the former
default argument ({Load,Store}OwnershipQualifier::Unqualified), to
SILBuilder::create{Load,Store}(...). For now, one can just do that in situations
where one needs to create loads/stores, but over time, I am going to tighten the
semantics up via the verifier.
rdar://28685236
When AnyHashable was added, SILGen gained support for lowering
AnyHashableErasureExpr, however we forgot to also add support
for AnyHashable parameter and result conversions to
FunctionConversionExpr.
Fixes <https://bugs.swift.org/browse/SR-2603>.
We don't want the machine calling conventions for closure invocation functions to necessarily be tied to the convention for normal thin functions or methods. NFC yet; for now, 'closure' follows the same behavior as the 'method' convention, but as part of partial_apply simplification it will be a requirement that partial_apply takes a @convention(closure) function and a box and produces a @convention(thick) function from them.
This eliminates a pile of now-dead code in:
* The type checker, where we no longer have special cases for bridging conversions
* The expression ASTs, where we no longer need to distinguish bridging collection up/down casts
* SILGen, which no longer uses
Still to come is the removal of the
_(set|dictionary)Bridge(From|To)ObjectiveC(Conditional)? entrypoints
from the standard library. They're still used by some tests.
If an ObjC API claims to return a nonnull object of a bridged type, such as blocks, then we're already screwed since we don't take that possibility into account when bridging to a Swift function. Attempting to peephole that case only generates broken code attempting to bitcast () -> () to Optional<() -> ()>, which is invalid due to the abstraction change between () -> () and Optional<T>. Fixes SR-2331.
Previously, if a generic type had a stored property with
a generic type and an initializer expression, we would
emit the expression directly in the body of each designated
initializer.
This is a problem if the designated initializer is defined
within an extension (even in the same source file), because
extensions have a different set of generic parameters and
archetypes.
Also, we've had bugs in the past where emitting an
expression multiple times didn't work properly. While these
might currently all be fixed, this is a tricky case to test
and it would be best to avoid it.
Fix both problems by emitting the initializer expression
inside its own function at the SIL level, and call the
initializer function from each designated initializer.
I'm using the existing 'variable initializer' mangling for this;
it doesn't seem to be used for anything else right now.
Currently, the default memberwise initializer does not use
this, because the machinery for emitting it is somewhat
duplicated and separate from the initializer expressions in
user-defined constructors. I'll clean this up in an upcoming
patch.
Fixes <https://bugs.swift.org/browse/SR-488>.
Synthesizing a VarDecl for #dsohandle causes some unwanted accessors to
be expected, but we really don't need them: this is a global variable
for the start of the image. There are only two uses of getDSOHandle:
getting the type and emitting the SIL for it. Rather than perform
acrobatics to turn off switches, just emit access directly where it's
needed.
rdar://problem/26565092
String literal expressions, as well as the magic literals #file and
tuple value that is then fed into one or two call expressions. For
string literals, that tuple value was implicitly splatted, breaking
AST invariants.
Instead, keep string literals and these magic literals that produce a
string as a single expression node, but store the declarations that
will be used to transform the raw literal into the complete
literal. SILGen will form the appropriate calls. This representation
is far simpler---the AST no longer has a bunch of implicit nodes---and
doesn't break AST invariants.
* [Type System] Handle raw pointer conversion.
As proposed in SE-0107: UnsafeRawPointer.
https://github.com/apple/swift-evolution/blob/master/proposals/0107-unsaferawpointer.md#implicit-argument-conversion
UnsafeMutablePointer<T> -> UnsafeMutableRawPointer
UnsafeMutablePointer<T> -> UnsafeRawPointer
UnsafePointer<T> -> UnsafeRawPointer
UnsafeMutableRawPointer -> UnsafeRawPointer
inout:
&anyVar -> UnsafeMutableRawPointer
&anyVar -> UnsafeRawPointer
array -> UnsafeRawPointer
string -> UnsafeRawPointer
varArray -> UnsafeMutableRawPointer
* Rename expectEqual(_, _, sameValue:) to expectEqualTest to workaround a type system bug.
<rdar://26058520> Generic type constraints incorrectly applied to functions with the same name
This is exposed by additions to the type system for UnsafeRawPointer.
Warning: unit tests fail very confusingly without this fix.
Strict aliasing only applies to memory operations that use strict
addresses. The optimizer needs to be aware of this flag. Uses of raw
addresses should not have their address substituted with a strict
address.
Also add Builtin.LoadRaw which will be used by raw pointer loads.
If a behavior has storage that can be initialized out-of-line, generate code in SILGen that uses stores to mark_uninitialized_behavior for eventual analysis by DI.
This is incomplete, particularly, it's missing code generation of glue thunks for accessors that require reabstraction, but I wanted to make sure the progress here didn't bitrot.
Being generic, the '_unwrapped' intrinsics force trafficking through memory, and while they're transparent so always get inlined, we don't do memory promotion in -Onone. Emitting the branch inline lets loadable optionals stay values leading to better -Onone codegen. (It also lets us throw away a surprising amount of support code for these optional intrinsics.)
We already have detailed knowledge of Optional's layout in SILGen, so these intrinsics were almost unused. They were only used in a few obscure places by some optional-to-bool conversions, used by 'is [A]' collection tests and the codegen for 'lazy' properties. Change these over to generate an EnumIsCaseExpr that we can directly lower to a 'select_enum' instruction in SILGen, leading to better codegen and obviating the need for these intrinsic functions.
emitLValue always has to occur in a writeback scope, even if the lvalue isn't formally accessed until later, because some lvalue productions immediately access their parent lvalue expression (namely optional chaining expressions). Fixes rdar://problem/26642478.
We now have enough machinery in place to reference local generic
functions which have captures, to get a value of function type
that can be passed around.
Generic local functions still cannot be directly called from
function call expressions, since those go down a different
path in SILGenApply.cpp -- the next patch will add support for
this case.
...in code that I wrote. The integrated REPL, deprecated though it may
be, does not have an associated DeclContext because its SourceFile is
not considered complete. (The proper LLDB REPL does not suffer from
this problem because they use a new SourceFile for every block of
input.)
Elsewhere, tighten up code that may have hit similar bugs, though we
haven't seen anything hit these yet.
rdar://problem/26476281
Implement the Objective-C #keyPath expression, which maps a sequence
of @objc property accesses to a key-path suitable for use with
Cocoa[Touch]. The implementation handles @objc properties of types
that are either @objc or can be bridged to Objective-C, including the
collections that work with key-value coding (Array/NSArray,
Dictionary/NSDictionary, Set/NSSet).
Still to come: code completion support and Fix-Its to migrate string
literal keypaths to #keyPath.
Implements the bulk of SR-1237 / rdar://problem/25710611.
Implements the core functionality of SE-0064 / SR-1239, which
introduces support for accessing the Objective-C selectors of the
getter and setter of an @objc property via #selector(getter:
propertyName) and #selector(setter: propertyName).
Introduce a bunch of QoI around mistakes using #selector to refer to a
property without the "getter:" or "setter:", using Fix-Its to help the
user get it right. There is more to do in this area, still, but we
have an end-to-end feature working.
Much of the implementation and nearly all of the test cases are from
Alex Hoppen (@ahoppen). I've done a bit of refactoring, simplified the
AST representation, and replaced Alex's custom
expression-to-declaration logic with an extension to the constraint
solver. The last bit might be short-lived, based on swift-evolution
PR280, which narrows the syntax of #selector considerably.